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Abstract

This thesis presents measurements of the b-asymmetry of spin-polarized 35Ar
in different crystals and at different temperatures. These measurements form
the first phase of a research project that aims to measure the b-asymmetry
parameter with a relative precision of 0.5%. This thesis details technical
developments of the beamline that was used to perform these measurements.
These developments include the specifications of the different magnetic fields and
the design and construction of the different coils. Furthermore, an existing rate
equation formalism was extended to permit calculations in which an arbitrary
number of levels and lasers interact. This extension proved crucial in optimizing
the optical pumping scheme of 35Ar and achieving maximal polarization. In
addition, analysis techniques based on likelihood maximization and Monte-Carlo
probing of the resulting parameter distribution are described here.

After implantation of the spin-polarized 35Ar into NaCl and KCl crystals,
an asymmetry of about 1% was observed at low temperatures (≈10 K).
This result is compared to theoretical estimates, taking into account several
processes which were investigated numerically: the optical pumping process,
the rotation of the nuclear spin in the applied magnetic fields and the path of
the emitted b-particles. This comparison shows agreement between the data
and the simulations, although the b-scattering simulations do come with a
large systematic uncertainty due to problems with the simulation software.
Furthermore, a growth of an impurity layer on top of the crystal surface limited
the measurement time: after every hour of measurement, a two hour cycle
of heating and cooling down the crystal was required to restore the observed
signal.

Future technical challenges will include improving the vacuum system to extend
the useful measurement time at cryogenic temperatures and reduce the duty
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cycle loss. Preliminary studies of techniques to enhance the polarization indicate
that laser re-ionization would be most interesting for the future of the project.
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Beknopte samenvatting

In deze thesis wordt de b-asymmetrie van spin-gepolariseerd 35Ar in verschillende
kristallen en bij verschillende temperaturen opgemeten. Deze metingen vormen
de eerste fase van een onderzoeksproject met als doel het bepalen van de
b-asymmetrie-parameter met een relatieve precisie van 0.5%. Een eerste
deel van de thesis bespreekt het technisch ontwerp van de bundellijn waar
deze metingen zijn uitgevoerd. De beschrijving bevat de specificaties van de
verschillende magnetische velden en het ontwerp van de spoelen. In een tweede
deel van de thesis is het bestaand formalisme van rate equations uitgebreid om
een systeem van een arbitrair aantal interagerende energieniveau’s en lasers
theoretisch te beschrijven. Deze extensie was cruciaal in het optimaliseren
van lasersysteem voor het optisch pompen van 35Ar om de kernpolarisatie
te maximaliseren. De aangewende analysetechnieken, die gebruik maken van
likelihood-maximalisatie en de daaruitvolgende parameter-distributies opmeten
door Monte Carlo-technieken, worden ook besproken in deze thesis.

Bij het implanteren van spin-gepolariseerd 35Ar in NaCl- en KCl-kristallen, is
een asymmetrie van ongeveer 1% opgemeten bij lage temperaturen (≈ 10 K). Dit
resultaat is vergeleken met theoretische verwachtingen, waar met verschillende
processen numeriek rekening is gehouden: (i) het optisch pompen, (ii) de rotatie
van de kernspin in de magnetische velden van de opstelling, en (iii) het pad
van de uitgestraalde b-deeltjes. Deze vergelijking toont een goede overeenkomst
tussen de experimentele resultaten en de theoretische simulaties, hoewel er een
significante onzekerheid verbonden is aan de b-verstrooingssimulaties omwille
van de gebruikte software. Bovendien is ook vastgesteld dat een opbouw van
onzuiverheden op het oppervlak van de NaCl- en KCl-kristallen de beschikbare
meettijd beperkt: na elk uur meten aan koude temperaturen moet een cyclus
van opwarmen en afkoelen met een totale duur van twee uur doorlopen worden
om opnieuw dezelfde asymmetrie te observeren.

v
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vi BEKNOPTE SAMENVATTING

Verdere technische uitdagingen zijn o.a. het verbeteren van het vacuüm in de
opstelling, waardoor de opbouw van onzuiverheden wordt vertraagd. Hierdoor
zal langer gemeten kunnen worden vooraleer een opwarm-afkoel cyclus vereist is.
Een preliminaire vergelijking van verscheidene technieken om het meetsignaal
te verbeteren duidt het gebruik van lasers om de bundel opnieuw te ioniseren
aan als de meest interessante optie.
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Chapter 0

Preface

This thesis describes the development of a laser-polarization beamline located
at ISOLDE, CERN and the results of polarization tests of 35Ar performed using
the same beamline. The beamline has been designed with the goal of producing
polarized beams using the technique of optical pumping, where circularly
polarized lasers are used to spin-polarize the nuclear spin of an ensemble
via resonant excitation. Such a spin-polarized ensemble, when it undergoes
b-decay, will emit the b-particles with an asymmetric angular distribution. After
spin-polarizing radioactive 35Ar atoms using the optical pumping technique,
the subsequent b-decay asymmetry was measured as a function of time and for
different laser frequencies. These measurements were used to characterize the
optical pumping process. Simulations of the spin-rotation and scattering of the b-
particles were performed in order to investigate the experimental measurements
more deeply. The result of these measurements and simulations provide input
for further phases of the project. This project aims to perform high precision
measurements for weak interaction studies.

This work is divided into seven chapters. Chapter 1 provides the context and
motivation to build a beamline dedicated to laser-polarizing a nuclear ensemble
and the role of b-asymmetry measurements of 35Ar could play in the context
of weak interaction studies. Chapter 2 presents a theoretical framework for
performing rate equations to calculate nuclear spin-polarization as a result of
laser-particle interactions, which were generalized to an arbitrary amount of
levels and lasers for the first time. A description of the application of these

1
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rate equations to the 35Ar system is provided in Chapter 3. The optimal laser
scheme, which uses multi-frequency pumping, is deduced. The impact of the
fragmentation of the population across the atomic levels of Ar after charge
exchange between the Ar ions and a K vapor is also studied in this chapter.

Chapter 4 details the experimental setup, including the development of the
beamline as well as additional considerations on the magnetic fields and a crystal
holder that was cooled to cryogenic temperatures. This is mainly done through
the inclusion of an article, which gives an overview of the new beamline including
beam transport simulations and results on the newly applied multi-frequency
pumping technique:

• A new beamline for laser spin-polarization at ISOLDE
W. Gins, R. D. Harding, M. Baranowski, M. L. Bissell, R. F. Garcia
Ruiz, M. Kowalska, G. Neyens, S. Pallada, N. Severijns, Ph. Velten, F.
Wienholtz, Z. Y. Xu, X. F. Yang, D. Zakoucky
Submitted to Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment

The details of the experimental conditions are given in Chapter 5, where the
method of extracting the b-asymmetry and relaxation times in different crystals
are also discussed. Included in this chapter is the analysis method, presented in
the article detailing the development of the SATLAS analysis package which
was used throughout the thesis:

• Analysis of counting data: Development of the SATLAS Python
package
W. Gins, R. P. de Groote, M. L. Bissell, C. Granados Buitrago, R. Ferrer,
K. M. Lynch, G. Neyens, S. Sels
Computer Physics Communications 222 (2018) 286-294

The measured b-asymmetry is studied in more detail in Chapter 6, where
additional simulations of the spin-rotation and the scattering of b-particles
are also given. Chapter 7 concludes this thesis and summarizes the observed
b-asymmetry behavior of 35Ar and gives an outlook for the future of the project.
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Chapter 1

Introduction

Time has come and we must be on our way
—Twilight Force, To The Stars

As nuclear physics research grows, more specialized measurement techniques are
continuously developed. This leads to research facilities installing permanent
setups in order to perform specific types of measurements. The chapter describes
the motivation behind both the development of a permanent beamline dedicated
to laser-polarization at ISOLDE, CERN is given, as well as the b-asymmetry
measurements on 35Ar.

1.1 Laser-polarization beamline

ISOLDE (Isotope Separator OnLine DEvice) is a facility, located in the CERN
Meyrin site, where ion beams of exotic radioactive species have been produced
since 1967 [1]. These radioactive beams have allowed studies ranging from
nuclear structure [2, 3] and nuclear astrophysics [4] to fundamental interactions
[5] and solid state physics [6]. This wide range of research topics can be covered
due to the availability of more than 1300 radioactive species at ISOLDE at
energies ranging from 30 keV up to 10 MeV/u, and production of new isotopes
is an ever ongoing research topic [7].

3
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COLLAPS

CRIS

VITO

p+
Target

HRS

ISCOOL

Figure 1.1: ISOLDE layout, with the location of the collinear laser spectroscopy
beamlines indicated. Also indicated are the proton line (p+), the target, the
High Resolution Separator (HRS) and the ISOLDE cooler-buncher (ISCOOL).
Figure taken from the ISOLDE website.

The produced radio-isotopes can be guided to different measurement stations
and studied by applying various techniques, several of which rely on polarizing
the nuclear spin. When a nuclear spin-polarized ensemble decays, the b-particle
has an angular distribution (relative to an orientation axis) of [8]

W (θ) ∼ 1 +A
〈I〉
I

pec

Ee
cos (θ) = 1 +AP

v

c
cos (θ) , (1.1)

where I is the nuclear spin, 〈I〉 /I is the nuclear polarization P , A is the b-
asymmetry parameter and v is the velocity of the emitted b-particle. Several
setups have made use of nuclear spin-polarized beams to perform measurements,
ranging from semi-temporary beamline modifications to permanent setups. In
order to generate the spin-polarization, methods such as optical pumping [9],
low temperature orientation [10] and passing the beam through a tilted foil
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[11] have all been used at ISOLDE. Of these techniques, optical pumping has
been used in a temporary setup at the COLLAPS beamline in order to perform
b-NMR measurements, allowing the study of the nuclear moments of exotic
radioactive isotopes [9, 12, 13]. When an optical pumping cycle is available
in an atomic or ionic system, the advantage of optical pumping is the high
degree of polarization that can be achieved, which is typically higher than can
be generated by passage through tilted foils [14].

As spin-polarized beams can be used in nuclear structure research [15],
fundamental symmetries [16] and biomedical/biochemical research on liquid
samples [17, 18], the demand for polarized beams is very high and construction
of a dedicated beamline was suggested as the Versatile Ion Techniques Online
(VITO) beamline [19, 20] (location in the experimental hall given in Figure 1.1).
One of the proposed projects at this new beamline focuses on a high precision
measurement of the b-asymmetry parameter of 35Ar for fundamental studies
[21]. This thesis investigates the feasibility of this experiment and specifically
focuses on the necessary conditions related to the production of a polarized
ensemble of 35Ar atoms and how long this polarization can be maintained after
implantation in a suitable host crystal.

1.2 b-asymmetry of 35Ar

One of the tests of the Standard Model is the probing of the unitarity of the
Cabibbo-Kobayashi-Maskawa matrix, which describes the mixing of the quark
states. One of the main elements in this matrix is the mixing between the up
and down quark, described by the matrix element Vud. This matrix element is
typically deduced from ft-values from various types of b-decay, of which the
superallowed Fermi decays give the most accurate determination [22]. One
of these types is b-decay of mirror nuclei, where the number of protons and
neutrons are switched after decay. Based on the superallowed Fermi decays,
Vud is evaluated to be [23]

|Vud| = 0.97420(21). (1.2)

Combining this result with the accepted result for |Vus| = 0.2243(5) for the
mixing with the strange quark (|Vub| for the mixing with the bottom quark
is negligibly small), the unitarity test results in |Vud|2 + |Vus|2 = 0.9994(5)
which is consistent with the expected value of 1. The uncertainty on this test
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is dominated by the uncertainty on |Vud|2, which is a factor 2 larger than the
uncertainty contribution of |Vus|2.

The extraction of Vud from mirror nuclei requires a measurement of either
the b-asymmetry parameter A or the b-n correlation parameter a. The latter
of these parameters describes the angular distribution between the emitted
positron and neutrino in the same way that A describes the angular distribution
of the emitted positron and the nuclear spin direction (pointed along an applied
static magnetic field). Previous measurements of the b-asymmetry parameter
of 35Ar [24, 25] used polarized protons impacting a gaseous target of Cl2,
producing polarized 35Ar isotopes via a 35Cl(p, n) reaction. From these studies,
an asymmetry parameter of respectively 0.49(10) and 0.427(23) was measured,
with the same technique as will be described in the following subsection, namely
b-g coincidence measurements. A recent survey [26] shows that improving
the precision on this b-asymmetry parameter could result in one of the most
sensitive single measurements of |Vud| to date. To this end, a proposal was
written to carry out high-precision b-asymmetry measurements on 35Ar isotopes
at ISOLDE [21].

In what follows, the measurement principle as given in the proposal will be
slightly expanded. Furthermore, the results of a preliminary study on the
experimental requirements will be discussed.

1.2.1 Measurement principle

In b∓-decay, the emitted electron/positron and antineutrino/neutrino can have
their spins either parallel to each other or anti-parallel. Therefore, transitions
proceed via a combination of two different types of decay [27]:

1. Fermi decay, where the emitted electron and neutrino have anti-parallel
spin vectors. This implies the total angular momentum of the nucleus
cannot change:

∆I = 0 (1.3)

2. Gamow-Teller decay, where the emitted electron and neutrino have parallel
spin vectors. Here, the total angular momentum of the nucleus can change
by a maximum of 1:

∆I = 0,±1 (1.4)
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Figure 1.2: Decay scheme of 35Ar, decay branches with a branching ratio
< 0.01% have been omitted for clarity. Darker levels/transitions correspond to
a greater branching ratio/γ intensity. Data obtained from Ref. [28].

In addition, Gamow-Teller decay cannot be present in a 0+ → 0+

transition.

As shown in Figure 1.2, the decay of 35Ar to 35Cl proceeds mainly via b+ decay
to the ground state (98.16% branching ratio) and the first excited state (1.23%
branching ratio). Electron capture decay is also present, but is on the order of
0.07% and 0.002% respectively. Taking the nuclear spins of these states into
account, the decay to the first excited state can only proceed via Gamow-Teller
decay, since If − Ii = 1/2 − 3/2 = −1. As the ground state of 35Cl has the
same spin as the ground state of 35Ar, this decay will be a mix of Fermi and
Gamow-Teller decay. As explained in the following section, it is the mixing
ratio between the Gamow-Teller and Fermi decays which is used to calculate
Vud. The mixing ratio can be accessed by measurement of the b-asymmetry A,
as introduced in Eq. (1.1).
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The decay scheme also shows that decay to the first excited state is followed by
the emission of a 1219.22 keV g. By performing a b-g coincidence measurement,
this g-line can be used to identify b-decays to the excited state and hence allows
measurement of the separate b-asymmetries of the two branches. The ratio of
the asymmetries is given by the ratio of the experimental asymmetries A:

Ags

Aex
=

〈
v
c cos (θ)

〉
ex

Ags〈
v
c cos (θ)

〉
gs

Aex

, (1.5)

where
〈

v
c cos (θ)

〉
is a correction factor for the phase space and solid angle.

By measuring the ratio, the absolute polarization P which occurs in both the
ground and excited state asymmetry terms can be factored out of the equation.
Additionally, the ratio of the correction factors is easier to calculate to high
precision than the absolute correction factors, reducing systematic uncertainties.

1.2.2 b-decay asymmetry to Vud

The mixing ratio of the decay is the ratio of the Gamow-Teller to the Fermi
matrix element of the decay [22]:

ρ = CAMGT

CV MF
. (1.6)

This mixing ratio has an impact on the associated asymmetry parameter.
Assuming no Beyond Standard Model physics, the asymmetry parameter ASM

is given by [26]

Aβ∓
SM =

∓λIf ,Ii
ρ2 − 2δIf ,Ii

√
Ii

Ii+1ρ

1 + ρ2 , (1.7)

with

λIf ,Ii
=


1 for If − Ii = −1

1
Ii+1 for If − Ii = 0
− Ii

Ii+1 for If − Ii = 1
. (1.8)

In the case of a pure Fermi decay (ρ → 0) the asymmetry parameter is 0, while
for pure Gamow-Teller decay (ρ → ∞) the asymmetry parameter is given by
λIf Ii

. As the decay of 35Ar to the first excited state of 35Cl is a pure Gamow-
Teller decay, the associated asymmetry parameter is λ1/2,3/2 = 1. Consequently,
the b-asymmetry parameter of the decay to the ground state can be extracted
from the measured ratio of experimental asymmetries using Eq. (1.5).
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Figure 1.3: The error budget on the extracted value of Vud from the b-asymmetry
parameter of 35Ar, along with updated budgets that could be achieved with
improved measurements.

Once the value of the b-asymmetry of the ground state decay branch is measured,
Eq. (1.7) can be inverted numerically to yield the mixing ratio of the decay.
The literature value for the b-asymmetry parameter of 35Ar (dominated by the
ground state decay) is 0.430(22), from which a mixing ratio of −0.279(16) is
calculated [29]. This mixing ratio can then be used to calculate the corrected
ft-value [26]

Ft0 ≡ Ft
(

1 + fA

fV
ρ2

)
= K

G2
FV

2
ud

(
1 + ∆V

R

) , (1.9)

where fA/fV is a statistical rate correction, K is a constant and G is the Fermi
coupling constant, and ∆V

R is a transition-independent radiative correction with
a value of 2.361(38)% [26].

This equation can then be used to extract |Vud| and calculate the contribution of
each experimental value to the uncertainty. Figure 1.3 shows the uncertainty on
Vud calculated from the 35Ar mirror decay using the currently accepted values
(black bars), assuming a new measurement of the b-asymmetry (top left-bottom

Table 1.1: Values used in calculation of the Vud error budget. Data for the
current limit taken from [29].

fA/fV [−] Ft [s] ρ [−] G/ (~c)3 [
GeV−2]

K/ (~c)6 [
GeV−4s

]
Current limit 0.9894(21) 5688.6(72) −0.279(16) 1.166 37(1) × 10−5 8120.278(4) × 10−10

δA = 0.5% - - −0.2790(16) - -
∆Ft/4.8 - 5688.6(15) - - -
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right hashes), and with an additional improved measurement of the Ft value
(bottom left-top right hashes). The values used are given in Table 1.1.

The current uncertainty is dominated by the mixing ratio, which can be reduced
to below the contribution of the Ft value by measuring the b-asymmetry with
a relative precision of 0.5%. A further improvement of the Ft precision by a
factor 4.8 would result in an uncertainty on Vud of 4 × 10−4 [26]. This error is
within a factor 2 of the current uncertainty on Vud.

1.2.3 Required experimental conditions

A report has been written by Philippe Velten [30] detailing preliminary estimates
of the experimental requirements to measure the asymmetry parameter to a
relative precision of 0.5%. The main points raised in this document of relevance
for this thesis will be summarized here.

In this report, the time (in seconds) estimated to reach a certain statistical
precision on Aex is deduced to be

t = 4
Idcyεcoinc

(
1 + 2

SB

)
R

(R− 1)2

(
∆Aex

Aex

)−2
(1.10)

where Idcy is the implanted activity, εcoinc is the coincident b-g detection effi-
ciency, SB is the signal-to-background ratio and R is given by −1−〈cos(θ)v/c〉P Aex

〈cos(θ)v/c〉P Aex−1 .

In this expression, εcoinc, SB and 〈cos (θ) v/c〉 have been evaluated for a
preliminary setup geometry using Monte-Carlo calculations in FLUKA. Values of
respectively 2.3 × 10−5, 2.25 and 0.8036 were found and used in this expression.
The remaining parameters are then the activity Idcy and the nuclear polarization
P . The measurement times calculated for two different polarizations and

Table 1.2: Parameters and estimated measurement time for two different
estimates of experimental conditions. Data taken from Ref. [30].

Parameter Situation 1 Situation 2

Idcy 1 × 106 0.5 × 106

P 30% 20%
t 16 hours 3 days
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Figure 1.4: Estimated measurement time with the setup as described in Ref. [21]
as a function of activity and nuclear polarization.

activities are given in Table 1.2. The impact of the polarization here is clearly
seen, with even a decrease from 30% to 20% increasing the measurement time
by almost a factor 3. The remaining factor of 2 is caused by the decrease
in activity. Figure 1.4 shows the estimated measurement time to reach 0.5%
relative precision as a function of the activity and the nuclear polarization.

As shown in both Table 1.2 and Figure 1.4, the nuclear polarization will be the
key element in determining the measurement time needed to achieve the relative
precision of 0.5%. Indeed, if an ensemble polarization of 30% could be reached,
then with an activity of 1 × 105 s−1 (a typical production rate at ISOLDE for
35Ar), an experiment of 5-10 days would allow to reach the required precision
(indicated with a plus on Figure 1.4). This thesis will therefore focus on the
first phase of the project, where the optical pumping scheme for polarizing 35Ar
is characterized and crystal hosts are tested in order to deliver an ensemble
with both maximal polarization and relaxation time.
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1.3 Experimental overview

The first phase of the experiment, as stated above, will characterize the optimal
optical pumping scheme to polarize a 35Ar atom beam and measurements will
be performed to identify the most suitable crystal host for maintaining the 35Ar
ensemble polarization after implantation. A short overview of the employed
experimental method is given here to provide a reference frame for the following
chapters.

The experiment will employ the method of optical pumping to spin-polarize the
beam of 35Ar. The only available closed cycle in the fine structure of Ar, required
for performing efficient optical pumping, is found in atomic Ar; therefore, the
ion beam will need to be neutralized via a charge exchange process. Due to
the high level density in the fine structure of atomic Ar, the final population
of Ar atoms will be distributed among several levels and this imposes a first
limitation of the maximum polarization that can be achieved in the ensemble.
In addition, while the desired fine structure transition frequency is well known,
the isotope shift of 35Ar compared to the stable 34,36,40Ar isotopes in this line
has never been measured. The experiment will therefore start by measuring the
isotope shifts of the three stable isotopes of Ar using the well-known method
of fluorescence detection after resonance excitation [3]. Using this information,
the isotope shift of 35Ar can be predicted and the frequency range to scan for
the hyperfine spectrum of 35Ar deduced. For the latter isotope, the yield is too
low to allow for an optical detection of the hyperfine spectrum. Only the more
sensitive method of b-asymmetry using a polarized beam can be applied [13,
31].

The charge exchange process takes place in the Charge Exchange Cell (CEC,
Figure 3 of Article I), after which the atom beam immediately interacts
with the laser beam. If the frequency of the laser beam is at resonance,
the optical pumping process starts. Previous experiments using atomic/ionic
laser transitions involving a J = 1/2 level for laser polarization have utilized
the formalism of rate equations very successfully to describe the measured
b-asymmetry spectra as a function of laser frequency [9, 32]. However, this
formalism needs to be extended to include decoupling of the nuclear and electron
spins in the case where the electron spin is not J = 1/2. In the case of 35Ar,
where J = 2, the fine structure level in the optical pumping cycle splits in four
hyperfine levels. Therefore, Acousto-Optic Modulators (AOM) will be used
to excite multiple hyperfine transitions simultaneously. This will enhance the
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generated polarization in the ensemble, but simulations have to be performed to
determine the gain. For these simulations, interaction with multiple frequencies
has to be added to the rate equation formalism.

In contrast to previous experiments where the b-asymmetry parameter was
determined by production (and stopping) of a polarized 35Ar beam in a gas [24,
25], the spin-polarized beam will be implanted in a solid crystal host in this
study. Implantation in a gas is not possible in our case, because of the low (50
keV) beam energy, which prevents the atoms from passing through a gas-cell
window. The implantation crystals are chosen to have a cubic lattice structure,
minimizing the impact of quadrupole interactions which lead to a breakdown of
the spin-polarization [33]. Also, the spin-relaxation time has to be investigated,
as this is crystal dependent and predictions of the relaxation time are in many
cases impossible (except for metals where it is known that Korringa relaxation
dominates [34]). Only one previous experiment was performed by implanting
polarized Ar in a crystal host, namely KBr [35]. After cooling down the crystal
below 50 K, a b-asymmetry of 1% was observed. The polarization was provided
by the reaction mechanism and the beam energy was on the order of 3.5 GeV.
In order to identify a crystal which allows maintaining the polarization, various
crystals will be tested in this work, over a wide temperature range. For this,
measurements of the spin-lattice relaxation time will be performed at different
temperatures.

With the end goal being an accurate determination of the b-asymmetry
parameter, the possible causes for loss of ensemble polarization, from the
moment of laser-induced polarization production to the time of observing b-
asymmetry after implantation, have to be evaluated carefully. Aside from
the aforementioned population distribution after charge exchange, two other
processes that can result in loss of polarization need to be evaluated: the rotation
and decoupling of the (coupled) nuclear and electron spin in the magnetic fields
of the setup, and the effect of scattered b particles in the setup on the observed
asymmetry.
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Chapter 2

Spin-polarization through
optical pumping with laser
light

Make use of a computation; Tap into the digits to
write; A set of rules to form the universe

—Epica, The Cosmic Algorithm

Spin-polarization can be achieved through different mechanisms, e.g. momentum
selection of ion beams at fragment separator facilities [36] or using low
temperature orientation [10]. One technique that can produce highly polarized
ensembles is optical pumping using circularly polarized laser light. The laser-
particle interaction can be modeled using rate equations, which will be developed
in this chapter. This development requires a brief introduction into the hyperfine
structure and its effect on the energy levels of the atomic fine structure.

2.1 Atomic fine and hyperfine structure

The energy structure of atomic systems can be explained by considering both
the electron-electron and the electron-nucleus interaction. The inclusion of

15
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several relativistic effects leads to the splitting of the electron energy levels
and is called the fine structure. Up to this point, the nucleus is considered to
be a point charge and the charge density is represented as a delta function.
Considering the nucleus as an extended, finite-size system leads to a further
correction to the electron energy, leading to the hyperfine structure.

When expanding the operators associated with the hyperfine interaction [37],
the parity of the operators can be used to reduce the number of non-zero
contributions. The result is a Hamiltonian with the terms

H = HE0 + HM1 + HE2 + . . . . (2.1)

where E stands for the electric matrix elements and M for the magnetic matrix
elements. Only the terms going up to the electric quadrupole moment have
been included, since these are the leading order corrections needed to reproduce
almost all known hyperfine spectra within typical experimental precision. For
specific isotopes, the magnetic octupole moment has been measured and reported
[38], but this term will not be treated here.

2.1.1 Isotope shift

The transition frequency between two levels is isotope dependent and this
variation is called the isotope shift. In relation to a reference isotope A, the
isotope shift of an isotope A′ is calculated as

δνA,A′
= νA′

0 − νA
0 . (2.2)

This shift is the result of two effects:

• Isotopes may have a different charge radius, so the overlap with the
electron wave function will be slightly different. This contribution is called
the field shift.

• The isotopes differ in mass, modifying the center of mass about which the
nucleus and electron cloud orbit, resulting in a slight energy difference.
This shift is called the mass shift.
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Combining these contributions, the isotope shift of a specific transition i is
given by

δνA,A′

i = Fiδ
〈
r2〉A,A′

+Mi
mA′ −mA

mA′mA
, (2.3)

where Fi and Mi are respectively the field and mass shift factors, δ
〈
r2〉A,A′

is
the change in mean square charge radius and m is the mass of the isotope.

2.1.2 Energy splittings

The main contribution to the hyperfine splitting is generated by the interaction
between the magnetic field generated by the electron cloud and the magnetic
dipole moment of the nucleus. The associated term in the Hamiltonian is given
by

HM1 = −
∫

V

Bdµ. (2.4)

Assuming a constant magnetic field over the nuclear volume results in

HM1 = −µ · B, (2.5)

which can be expanded to

HM1 = − µB0

~2IJ
I · J , (2.6)

where I is the nuclear spin, J the spin associated with the electron cloud and
µ and B0 the nuclear magnetic moment and magnetic field generated by the
electrons respectively. When no external magnetic field is present, the nuclear
and electron spin couple together to the total atomic spin F = I +J . Evaluation
of the energy change associated with this term, converted to a frequency, gives
[39]

∆νM1 = −1
2

A︷︸︸︷
µB0

hIJ

K︷ ︸︸ ︷
(F (F + 1) − I (I + 1) − J (J + 1)) . (2.7)

The energy difference is thus defined in terms of the hyperfine A parameter.

The next term in the nuclear-electronic interaction Hamiltonian is the
quadrupole interaction term. This is an interaction between the spectroscopic
quadrupole moment of the nucleus and the electric field gradient induced by
the electron cloud. For this interaction to occur, both the nuclear spin I and
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the electron spin J have to be at least 1. The resulting shift in frequency of a
specific hyperfine level F is given by

∆νE2 = −
B︷ ︸︸ ︷

eQVzz
3K (K + 1) − 4I (I + 1) J (J + 1)

8I (2I − 1) J (2J − 1) , (2.8)

where the electron charge e, the spectroscopic quadrupole moment Q and the
electric field gradient Vzz form the hyperfine B parameter.

2.1.3 Combined systems

Combining both the magnetic dipole and electric quadrupole splitting, each
hyperfine level F undergoes a shift given by

∆ν (J, F ) = −AK

2 −B
3K (K + 1) − 4I (I + 1) J (J + 1)

8I (2I − 1) J (2J − 1) . (2.9)

This results in a modified transition frequency between two hyperfine levels (Fj

and Fi) of two electronic fine structure levels i and j (with electron spins Jj

and Ji). Starting from the fine structure transition frequency ν0 and taking the
isotope shift into account, the transition frequency between two levels is given
by

νFi,Fj = ν0 + ∆ν (Aj , Bj , I, Jj , Fj) − ∆ν (Ai, Bi, I, Ji, Fi) + δνA,A′

i,j , (2.10)

where j/i is the higher/lower hyperfine level. The strength of the transition is
given by the transition coefficient, which will be calculated in Section 2.2.3.

The measurement of these transition frequencies allows the extraction of the
nuclear moments that appear in the A and B factors. This is independent of
any nuclear model, but it does require knowledge of the magnetic hyperfine field
B that appears in the A-factor and the electric field gradient Vzz which appears
in the B-factor. These magnetic and electric field contributions are different for
the upper and lower levels. Although a very prominent topic in current nuclear
structure research, this thesis will not extract nuclear information from the
hyperfine spectrum. Rather, the nuclear moments and hyperfine splittings are
already known and will be used in the rate equations to predict the hyperfine
spectrum.
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2.2 Rate equations for optical pumping

The term rate equations covers a broad range of models, mostly connected
with describing the dynamics of (chemical) reactions [40]. The mathematical
principles behind the formulation of these equations can also be applied to
laser-particle interactions. This provides a classical model in the form of a set
of differential equations. As this idea can be traced back to Albert Einstein
[41], the model and coefficients are called the Einstein model and Einstein
coefficients.

Based on the population distribution, the rate equations can be used to calculate
either the nuclear polarization or the photon emittance as a function of applied
laser frequency. Both possibilities are discussed at the end of this section.

2.2.1 Einstein model

The derivation of the equations is based on the work found in Refs. [42, 43].

The Einstein model describes the processes in a multi-level system interacting
with coherent radiation of frequency ν. In this section, we will work in a three
level system to more easily show the generalization. There are three interactions
to be accounted for:

1. Spontaneous decay (coefficient denoted with A).

2. Excitation (coefficient denoted with B).

3. Stimulated emission (also denoted with B).

Of these phenomena, only the first is independent of the presence of, and
interaction with, photons. Both excitation and stimulated emission are driven
by the presence of the photon field.

Consider a generic three level system as presented in Figure 2.1. We assume
that the probability for an atom in one of the three states to absorb or emit a
photon is proportional to the population of those states and the photon density.
In this case, the differential equations are written as

dN
dt = d

Nf

Nj

Ni

/
dt = A ·N +Bρ (ν) ·N, (2.11)
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i

j

f

Afi Bif Bfi

Aji Bij Bji

Afj Bjf Bfj

Figure 2.1: Generic three level system with levels i, j and f. The spontaneous
decay (solid), excitation (dotted) and stimulated emission (dashed) paths are
indicated.

where

A =

−(Afi +Afj) 0 0
Afj −Aji 0
Afi Aji 0

, (2.12)

Bρ (ν) =

− (Bfj +Bfi) Bjf Bif

Bfj − (Bji +Bjf ) Bij

Bfi Bji − (Bij +Bif )

ρ (ν) . (2.13)

The matrix A contains the spontaneous decay dynamics, B contains the
probability of stimulated emission and laser excitation and ρ (ν) represents
the spectral energy density for a specific frequency ν.

The Einstein A-coefficients are experimentally measured values and are known
as the transition strengths. They are given in units of s−1 and are also related
to the natural linewidth Γ of the transition via the Heisenberg uncertainty
relation:

∆E∆t = ~ → Γ = ∆E
h

= 1
2π∆t = A

2π (2.14)

where the lifetime ∆t of the excited state is given by the inverse of the Einstein
A-coefficient.

For the calculation of Bρ (ν), consider first the B-coefficients. Assuming time-
reversal symmetry, we see that the coefficient for stimulated emission should
be the same as for excitation for non-degenerate levels. As we will continue to



www.manaraa.com

RATE EQUATIONS FOR OPTICAL PUMPING 21

work with non-degenerate levels, we can assume the equality

Bif = Bfi. (2.15)

To rewrite Bρ (ν), consider the interaction cross section σ (ν). This can be
defined as the absorbed energy divided by the total incoming energy density I:

σ (ν) = Bijρ (ν)hν
I

. (2.16)

with I the energy density given in W/m2. Ref. [42, pages 137-140] describes
how an expression for the absorption cross section can be derived from the
optical Bloch equations and linked to the Einstein A-parameter. The result is

σ (ν) = Ajic
2

8πν2
0

L (ν) , (2.17)

with L (ν) the frequency dependent line shape function. In the ideal case, this is
a Lorentzian profile with the natural linewidth Γ as Full Width Half Maximum
(FWHM):

L (ν) = 1
π

Γ/2
(ν − ν0)2 + (Γ/2)2 . (2.18)

The lineshape is centered at νo, the difference in energy between levels i and j

converted to frequency. The full expression is then

Bijρ (ν) = Iσ (ν)
hν

= AijIc
2

8πhν2
0ν

L (ν) . (2.19)

The Lorentzian function L can be replaced to account for different broadening
mechanisms. The only requirement is that∫ +∞

−∞
L (ν) dν = 1. (2.20)

In order to incorporate broadenings with a Lorentzian and Gaussian result, the
lineshape is exchanged for a Voigt profile, which is defined as the convolution of
these profiles and more easily numerically evaluated with the Faddeeva function
[44, Eq. (7.4.13)]:

V (ν; νi, σ, γ) =
∫ +∞

−∞
G (ν′; νi, σ) L (ν − ν′; νi, γ) dν′ = Re [w (z)]

σ
√

2π
(2.21)
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where Re [w (z)] is the real part of the Faddeeva function with the argument
z = ν − νi + iγ

σ
√

2
.

Inserting these relations in Eq. (2.11) gives the time dynamics for a three level
system.

2.2.2 Generalized n-level system

In order to go to an n-level system, it is sufficient to note that the sum of every
column of A and Bρ (ν) is zero. The diagonal elements can therefore be written
as the sum of all the other elements in that column, with a minus sign. Writing
down the generalization of the matrices results in

A =



−
∑

j<n Anj 0 · · · 0 0
An(n−1) −

∑
j<n−1 A(n−1)j

... . . . ...
...

... −A21
An1 · · · · · · A21 0


, (2.22)

Bρ (ν) =


−

∑
j 6=n Bnj B(n−1)n · · · B1n

Bn(n−1) −
∑

j 6=n−1 B(n−1)j

...
... . . . ...

Bn1 B(n−1)1 · · · −
∑

j 6=1 B1j

ρ (ν) ,

(2.23)

where the levels have been numbered 1 to n in increasing energy.

Including interactions with more than one laser is done by including extra
Bρ (ν) matrices. The total interaction matrix for m lasers is then

Bρ (ν1, . . . , νm) =
∑

i=1→m

Bρ (νi) . (2.24)

The differential equation governing the time dynamics of the generalized system
is still given by

dN
dt = A ·N +Bρ (ν1, . . . , νm) ·N. (2.25)
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2.2.3 Transition intensities

The experimentally measured A coefficients correspond to the total decay rate
from all hyperfine sub-levels. The partial decay rate for each of the hyperfine
sub-levels therefore has to be calculated. This is given by [45]:

AFjFimFj
mFi

= Cν3
∣∣∣〈JiIFimFi

∣∣∣D̂µ

∣∣∣JjIFjmFj

〉∣∣∣2
, (2.26)

with D̂µ the electric dipole operator with polarization µ and C = 4 (2π)3
/

(
3c3~

)
.

This is the partial decay rate between levels j (upper) and i (lower), with total
spin Fj and Fi respectively. The m quantum number refers to the z-component
of this spin. Application of the Wigner-Eckart theorem [46]

〈
jm

∣∣T k
q

∣∣j′m′〉 = (−1)j−m

(
j′ j k

m′ −m q

) 〈
j
∣∣∣∣T k

∣∣∣∣j′〉 (2.27)

results in

∣∣∣〈JiIFimFi

∣∣∣D̂µ

∣∣∣JjIFjmFj

〉∣∣∣2
=

(
Fi Fj 1

−mFi
mFj

µ

)2

×
∣∣∣〈JiIFi

∣∣∣∣∣∣D̂∣∣∣∣∣∣JjIFj

〉∣∣∣2
. (2.28)

The reduced matrix element for a coupled system (j1 coupling with j2 to form
a total spin J) can be written as a function of the matrix elements in the
individual subsystems, provided the tensor operator can be considered as a
tensor product of operators acting on two independent subsystems [47], for
which the general result is

〈
j1j2J

∣∣∣∣T k
∣∣∣∣j′

1j
′
2J

′〉 =
√

2J + 1
√

2J ′ + 1
√

2k + 1


j1 j2 J

j′
1 j′

2 J ′

k1 k2 k


×

〈
j1

∣∣∣∣T k1
∣∣∣∣j′

1
〉 〈
j2

∣∣∣∣T k2
∣∣∣∣j′

2
〉

(2.29)

Applied to the previous equation:
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∣∣∣〈JiIFi

∣∣∣∣∣∣D̂∣∣∣∣∣∣JjIFj

〉∣∣∣2
= (2Fi + 1) (2Fj + 1)

×
{
Ji Fi I

Fj Jj 1

}2 ∣∣∣〈Ji

∣∣∣∣∣∣D̂∣∣∣∣∣∣Jj

〉∣∣∣2
. (2.30)

The reduction of the 9j to the 6j symbol is due to the dipole operator acting
only on the electron spin subspace. The identity operator acting on the nuclear
spin subspace results in k2 = 0, which makes the 9j symbol proportional to a
6j symbol through the reduction rules of a 9j symbol.

Substituting this back into Equation (2.26) gives

AFjFimFj
mFi

= Cν3
∣∣∣〈Ji

∣∣∣∣∣∣D̂∣∣∣∣∣∣Jj

〉∣∣∣2
(2Fi + 1) (2Fj + 1)

×
(

Fi Fj 1
−mFi mFj µ

)2 {
Ji Fj I

Fj Jj 1

}2

. (2.31)

Here, Cν3
∣∣∣〈Ji

∣∣∣∣∣∣D̂∣∣∣∣∣∣Jj

〉∣∣∣2
can be related to the total decay rate. Specifically,

summing over all polarizations µ and states in level i, we get

Aji =
∑

µmFi
Fi

AFjFimFj
mFi

=
Cν3

∣∣∣〈Ji

∣∣∣∣∣∣D̂∣∣∣∣∣∣Jj

〉∣∣∣2

2Jj + 1 . (2.32)

The final result is that

AFjFimFj
mFi

= Aji (2Jj + 1) (2Fi + 1) (2Fj + 1)

×
(

Fi Fj 1
−mFi mFj µ

)2 {
Ji Fi I

Fj Jj 1

}2

, (2.33)

where the factor after Aji is to be interpreted as the relative intensity of the
hyperfine transition. This relative intensity is also often colloquially referred
to as the Racah intensity. The Wigner 3j- and 6j-symbols also contain all the
symmetries that must be obeyed for a transition to be possible. The restrictions
are that:

• µ = mFi −mFj .
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• |Fj − Fi| ≤ 1.

• Fj and Fi are not both 0.

In building the matrices describing the rate equations for a set of hyperfine split
levels, Eq. (2.33) is used to calculate the A-coefficient. In addition, the entries
in the matrices as given in Equations (2.22) and (2.23) are now replaced by
submatrices. In the case of A, every element Aji is replaced by the following
matrix:

Aji →


AdFjedFie

⌈
mFj

⌉⌈
mFi

⌉ · · · AbFjcdFie
⌊

mFj

⌋⌈
mFi

⌉
... . . . ...

AdFjebFic
⌈

mFj

⌉⌊
mFi

⌋ · · · AbFjcbFic
⌊

mFj

⌋⌊
mFi

⌋
 , (2.34)

where the notation de and bc is used to denote the maximal and minimal value
respectively, and Fj , Fi, mFj

, and mFj
are the total spin and its projection for

the states j and i.

The matrix B is expanded in a similar way, and the energy difference between
the levels now includes the shift due to the hyperfine interaction. However,
in replacing the decay rate A by the partial decay rate A in Eq. (2.19), the
polarization parameter µ has to be replaced by the polarization of the laser.
In the case of a right- or left-handed circularly polarized laser (σ+ and σ−

respectively), this is +1 and −1. A linear polarization π corresponds with a
value of 0.

With the inclusion of the hyperfine splitting, the matrices and Eq (2.25) can
be used to track the population of the F,mF states in time. This is done by
numerically solving the rate equations. The Runge-Kutta (RK) methods are a
standard choice [43] for numerical solving, but they can become unstable when
the system of equations is stiff. The analysis code used in this thesis generates
the matrices as given in this section and uses the Livermore Solver for Ordinary
Differential Equations (LSODA/LSODE) [48]. The SciPy interface is used to
access this method in the Python programming language, which in turn uses a
Fortran implementation [49].

Developed for use with both stiff and non-stiff systems of equations, the
numerically estimated Jacobian is used to determine the stiffness of the system.
A Backward Differentiation Formula (BDF) method is used in the case of a
stiff system, and an Adams method (in the same family of solvers as the RK
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Table 2.1: Using the interface provided in SciPy, the computation time per
frequency point is the same order of magnitude as for the RK methods
implemented in ROOT (code provided by D. Yordanov).

LSODA with Jacobian LSODA RK4 (ROOT) Adaptive RK (ROOT)
0.4 ms 0.6 ms 0.1 ms 0.08 ms

method) when the system is evaluated as non-stiff. Note however that the
Jacobian of the system of equations is the matrix A+Bρ (ν). By supplying the
algorithm with this exact Jacobian, a speedup of 50% is achieved (Table 2.1).

2.3 Simulations of hyperfine structure spectra

2.3.1 Nuclear polarization calculation

The rate equations as developed in the previous section allow the evaluation of
the population of the F,mF states for an arbitrary amount of levels interacting
with an arbitrary number of lasers. For simulations of b-asymmetry spectra,
the asymmetry is calculated as the product of the nuclear polarization P and
the b-asymmetry parameter A. This nuclear polarization can be extracted from
the populations calculated using the rate equations. The nuclear polarization
of an ensemble of different F,mF states is defined as

P = 〈mI〉
I

=
∑

F,mF

w(F,mF )mI (F,mF )
I

, (2.35)

where mI (F,mF ) is the projection of I in a specific F,mF state and w (F,mF )
is the population probability of the F,mF state. A transformation to go from
F,mF quantum numbers to mI ,mJ is therefore required. In the limit of a strong
external magnetic field, where the hyperfine interaction can be considered a
perturbation effect, a simple mapping between the two sets of quantum numbers
is possible with the assumption that the magnetic field evolves slowly enough
such that the population of each eigenstate does not change [43].

The Hamiltonian describing both the hyperfine interaction and the magnetic
interaction with the electrons (Zeeman interaction) for a specific fine structure
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Figure 2.2: Breit-Rabi diagram for meta-stable 35Ar. The quantum numbers on
the right are the (mI ,mJ) numbers. The colors group sub-levels originating from
the same F state. The atomic and nuclear parameters used in this calculation
are given in

level is of the form
H = AI · J + gLµBB · J (2.36)

Table 2.2: Projection table of (mI ,mJ) for the case of the metastable state of
35Ar. From spin-projection, it follows that mF = mI +mJ and is the number
calculated in the array. The groupings of different F states for A > 0 are given
by shapes, and are colored to show the groupings for F = 7/2 (purple), F = 5/2
(green), F = 3/2 (white) and F = 1/2 (red).

mJ

mI −3/2 −1/2 1/2 3/2

−2 −7/2 −5/2 −3/2 −1/2
−1 −5/2 −3/2 −1/2 1/2
0 −3/2 −1/2 1/2 3/2
1 −1/2 1/2 3/2 5/2
2 1/2 3/2 5/2 7/2
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where gL is the Landé g-factor for the level under consideration and µB is the
Bohr magneton. In the strong field limit (‖B‖ � |A| / (gLµB)), the hyperfine
interaction can be neglected and only the Zeeman interaction is present. This
leads to the grouping of levels with the same mJ , as seen in Figure 2.2. When
creating a projection table as in Table 2.2, the rows therefore represent levels of
the approximately same energy. The quantum number mF can be assigned by
considering the conservation of spin-projection that guarantees mF = mI +mJ .
Only the quantum number F now needs to be assigned to the (mI ,mJ) states
in order to have a mapping between the two sets.

If the hyperfine A parameter is positive, the states with the highest F quantum
number are also highest in energy at ‖B‖ = 0. As levels with the same mF will
repulse each other, the relative ordering of these levels is conserved. The bottom
row of Table 2.2 therefore corresponds with the sub-states with maximal F . The
second row from the bottom will correspond with the F − 1 sub-states, except
for the minimal projection on that row in the leftmost column. This state is
missing from the group of maximal F sub-states, and is therefore grouped with
them. Continuing in this fashion up the table shows that the grouping forms
-shapes. This completely defines the one-to-one mapping between the two sets
of quantum numbers. When the hyperfine A parameter is negative, the same
reasoning leads to groupings in -shapes. Table 2.2 has been annotated with
colored boxes that illustrate the grouping.

This mapping has been verified by determining the eigenvalues and eigenstates
as a function of magnetic field with the matrix representation of Eq. (2.36).
With the eigenstates, the spin projections can be explicitly calculated and
compared to the expected result from the constructed mapping.

Applied to the 35Ar system in the meta-stable state (I = 3/2, J = 2), the
resulting Breit-Rabi diagram is given in Figure 2.2. The (mI ,mJ) quantum
numbers for a high magnetic field are given on the right. Comparing to the
mapping, the calculated quantum numbers match the mapping exactly.

2.3.2 Photon rate calculation

From the rate equations, the photon emission rate can also be calculated. As
only moving population from an upper level to a lower one is accompanied
by photon emission, only parts of the A and Bρ (ν) matrices are needed to
calculate the photon emission rate.
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The decays to a lower lying energy state are selected by only considering the
lower triangle of the matrices A and B. The strictly lower triangular form of
the matrix is considered, also setting the elements on the main diagonal to zero.
By summing each column to a single number and reducing the matrix to a 1 ×n

vector, the total photon decay rate from each level is calculated. The total
photon emission rate per particle R is then given by the matrix multiplication
with the populations of the levels:

R =
[∑

j<n Anj +Bnj · · · 0
]

·

Nn

...
N1

 =
∑

n

∑
j<n

(Anj +Bnj)Nn. (2.37)

Calculating how long the particle beam is in front of photo-multiplier tubes
(PMTs) and integrating the photon rate over this timespan gives the total
amount of photons per particle to be observed. Note that Eq. (2.25) is still
used to determine the dynamics of the populations.

2.3.3 Spectrum calculation

The result of the rate equations can now be converted from a population into
either a polarization, or an amount of emitted photons per particle. These
calculations are carried out over a range of laser frequencies and the result is
either an optical or b-asymmetry spectrum.

Both these methods have been applied in Figure 2.3. In these simulations, a laser
power density of 80 W/m2 has been used to calculate the polarization spectrum
and 2 W/m2 for the optical spectra. These different power densities are used
since the goal in the polarization spectrum is to generate many pumping cycles
and thereby maximizing the polarization and resulting b-asymmetry signal.
When a photon spectrum is measured, the goal is to see the different hyperfine
peaks with their Racah intensities and not too much power broadening. A lower
laser power is therefore used. The interaction time for both types of spectra
has been calculated for a 50 kV beam. For the polarization spectrum, the beam
passes through the full setup as described in Chapter 4. The optical signal is
obtained by integrating the photon rate in front of the optical detection region.
This results in interaction times of approximately 4 and 0.4 µs respectively.
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Figure 2.3: Predicted spectra for the experimental setup as described in
Chapter 4. Isotope shifts and differences in yield have not been included. The
total intensity in the optical spectrum of 35Ar is spread over several hyperfine
transitions, reducing the intensity per peak significantly. Peaks seen in the
polarization spectrum at ≈ −1250 MHz and −500 MHz are also present in the
optical spectrum, but with a very small intensity. This illustrates the higher
sensitivity that can be achieved via b-asymmetry detection.

To fit the optical spectra, the full set of rate equations will rarely be used.
Instead, a lineshape (typically the Voigt profile) is placed at each calculated
transition frequency (based on Eq. (2.10)). The intensity of each profile a is
either left as a free parameter or restricted to the relative intensities given by
Eq. (2.33). The resulting spectrum S is then the sum of the individual profiles:

S (ν) =
∑

i

ai · V (ν; νi, σi, γi) . (2.38)

The advantage of this method is the speed of calculation compared to solving
the rate equations. This speedup is crucial in fitting routines. The fitting of
optical spectra has been implemented as a standard feature in a user-friendly
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analysis package developed in the course of this work, which is presented in
Chapter 5.

For the polarization spectra, no such simplification can be made and the rate
equations must be used to fit to experimental data. The rate equations have
been implemented in the same analysis package, but are not part of the standard
distribution.
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Chapter 3

Spin-polarizing 35Ar through
optical pumping

I, I go my own way; I swim against the stream
—Arch Enemy, The Eagle Flies Alone

This chapter will discuss the selection of a suitable optical pumping transition for
the polarization of 35Ar. Furthermore, a method to maximize the polarization
in 35Ar using multi-frequency pumping is described.

3.1 Laser-polarizing a 35Ar beam

In order to laser-polarize a beam of 35Ar, a suitable optical pumping cycle must
be found. In the ion, no suitable transition can be found due to all involved
wavelengths being below 100 nm.

A viable transition is available in the atomic spectrum. Figure 3.1(a) shows
a Grotrian diagram (data taken from [50]) detailing the known levels and
transitions in neutral Ar. Since the first excited state is so high in energy that
no laser light of a suitable frequency can be generated, the pumping cycle will
have to use one of the metastable levels. The metastable levels of atomic Ar

33
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Figure 3.1: Level structure for Ar I. (a) Overview of the entire fine structure
of neutral Ar, with details for the charge exchange process annotated. (b)
Hyperfine structure of the selected transition, with the hyperfine transitions
that yield the highest polarization indicated in red.

are populated by a charge exchange process with a K vapor (see Section 3.3 for
more details).

Three metastable levels are present in neutral Ar: one with an electron spin of
0, one with 2 and one with 4. Of these levels, the J = 0 state does not have the
required hyperfine interaction through which the laser-induced polarization is
transferred to the nuclear system and oriented. The population of the spin 4
state is spread across many F -states, hindering efficient polarization. The J = 2
state (3s23p5(2P ◦

3/2)4s) has an optical pumping cycle with an 811.754 24 nm
transition to a J = 3 (3s23p5(2P ◦

3/2)4p) state with an Einstein A-coefficient
of 3.31 × 107 s−1 and a natural linewidth of 5 MHz [50]. Furthermore, as this
transition has already been studied in 39Ar [51] and the nuclear moments of
35Ar have been measured by other methods [35, 52], the hyperfine parameters
for this transition can be calculated precisely enough ahead of time and do not
require online measurements.
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In Figure 3.1(b), the hyperfine levels for this transition are shown, along with
the allowed laser transitions, with those leading to the highest nuclear spin
polarization indicated in red.

3.2 Simulations of 35Ar spin-polarization through
optical pumping

The hyperfine structure parameters are calculated by taking the measured
hyperfine parameters for 39Ar in the same transition [51] and scaling them with
the ratio of the g-factors for the A parameter, and the quadrupole moment
ratio for the B parameter:

A
(35Ar

)
=
g

(35Ar
)

g (39Ar)A
(39Ar

)
(3.1)

B
(35Ar

)
=
Q

(35Ar
)

Q (39Ar)B
(39Ar

)
(3.2)

Table 3.1 gives an overview of the parameters that are used in the simulations.

The rate equations as described in Chapter 2 were formulated for 35Ar, and
the resulting polarization for the entire hyperfine structure was calculated as a
function of the applied laser frequency. A maximal polarization of approximately
65-75% can be achieved by pumping on a single transition (depending on the
laser power), as visible in Figure 3.2. This limit is due to the fraction of

Table 3.1: Hyperfine parameters for the 3s23p5(2P ◦
3/2)4s → 3s23p5(2P ◦

3/2)4p
transition in 39Ar taken from Ref. [51]. The magnetic and quadrupole moments
for 35,39Ar are taken from [53], to calculate the hyperfine parameters for 35Ar.
The uncertainty on the calculated values for 35Ar is the result of uncertainty
propagation from all experimental values.

A [MHZ] B [MHz] g [-] Q [b]
39Ar: 4s -287.15(14) 119.3(15) -0.454(4) -0.12(2)4p -135.16(12) 113.6(19)
35Ar: 4s 266.6(24) 84(20) 0.42147(13) -0.084(15)4p 125.5(1.1) 80(19)
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Figure 3.2: Top: the hyperfine splitting of the two selected levels in 35Ar.
The transitions indicated in red are used to provide maximal polarization.
Bottom: the calculated nuclear polarization over the entire range of the hyperfine
spectrum when a single laser beam (No AOM) is present, and when the two
additional laser beams, with respectively +325 and +378 MHz are also applied
using two AOM’s when scanning the frequency of the main beam (2x AOM).
The gray dotted lines connect the hyperfine transitions with their location in
the spectrum without AOMs.

the population in a single hyperfine level. Note that this polarization is only
achievable if the transition is fully saturated.

To increase the maximal polarization, simultaneous pumping of several hyperfine
transitions can be used. From simulations, it is shown that simultaneous
pumping on the 7/2 → 9/2, 5/2 → 7/2 and 3/2 → 3/2 transitions, indicated
in red in Figure 3.1(b), gives a near-perfect (100%) nuclear polarization. To
achieve this, two Acousto Optic Modulators (AOM) are needed to generate
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sidebands to the main laser frequency. The crystals in these AOMs allow
interaction between an incoming photon and a phonon generated by applying
an RF frequency to the crystal. This shifts the incoming laser frequency by
the applied RF frequency. Thus, when scanning the main laser frequency, the
frequency of the side bands is scanned simultaneously.

Figure 3.2 shows the result of including 2 AOMs that are tuned to +325 and +378
MHz. These values are the frequency spacings of, respectively, the 3/2 → 3/2
and 5/2 → 7/2 transitions from the 7/2 → 9/2 transition. These frequency
spacings are based on the parameters calculated in Table 3.1. The number of
peaks in the spectrum is increased due to the presence of these sidebands, and
the intensity of most peaks also increases. The strongest component, previously
generating ∼ 75%, gives now ∼ 100% nuclear polarization.

Additionally, multiple-transition optical pumping reduces the required power
to saturate the optical pumping process. A full polarization of the ensemble is
therefore easier to achieve.

3.3 Production of an atomic beam of 35Ar in the
metastable state using charge exchange

While the previous section has shown the suitability of the 811 nm transition for
optical pumping, illustrating that in an ideal two-level system 100% polarization
can be achieved, the influence of the population distribution of the hyperfine
levels after the charge exchange process will now be investigated.

At the time of the proposal writing [21], it was assumed that ∼ 40% of the
ensemble would be in the metastable state after charge exchange with K, based
on earlier experiments [52]. This meant that, in the best case, 40% nuclear
polarization of the ensemble could be expected. The feasibility and beam time
estimates for the experiment were based on this assumption [21].

However, more recent cross section calculations for the charge exchange process
based on the formalism of Francis and Rapp [54, 55] suggest a much wider
distribution of the ensemble population across the many fine structure levels
above the energy entry point (Figure 3.1). The result of these calculations
is shown in Figure 3.3, where the distribution of the population across the
different fine structure levels is shown, omitting the ground state since this has
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Figure 3.3: Calculated initial population distribution of the fine structure levels
in 35Ar. The ground state, with 0% initial population, has been omitted from
the plot and the levels in the pumping cycle have been indicated in red.

a 0% population after charge exchange. The population in the metastable level
from which the optical pumping starts is calculated to be about 10%, a large
deviation from the estimated 40%.

Furthermore, these calculated populations can be used as input in the optical
pumping calculations, also using available data on the Einstein A-coefficients
from Ref. [50] to include spontaneous decay from all levels. These calculations
started by including the first 10 fine structure levels, and were steadily extended
by adding more of the populated fine structure levels. The laser was set to
include both AOM beams and pump on the strongest polarizing component.
The result, going up to 426 included fine structure levels, is given in Figure 3.4.

As more atomic levels are included in the calculations, two effects come into
play. Firstly, the relative population available for pumping is reduced which
means the entire time dynamics curve is scaled down by a multiplicative factor.
Secondly, higher lying levels feed into the meta-stable state at a later time,
modifying the rise time of the curve. From these calculations, it is concluded
that a maximum of 25% polarization can be achieved, rather than 40%. When
this ensemble is implanted in a crystal to study the asymmetry in its b-decay,
the large unpolarized fraction of the ensemble will induce a significant reduction
in the observed b-decay asymmetry.
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Figure 3.4: Top plot: time dynamics of optical pumping on the strongest
component for an increasing number of included levels. Bottom plot: final
polarization reached for an increasing number of levels. The line is colored to
match the colormap of the top plots. The ticks on the y-axis match the ticks
on the x-axis.

With an asymmetry parameter A = 0.43 and a polarization P = 0.25, a maximal
observed b-asymmetry of about 10% is expected, provided a crystal can be
identified in which the polarization is maintained long enough.

3.4 Technical realization of a maximally polarized
35Ar beam

Considering the results of the optical pumping simulations, three overlapped
beams of the same circular polarization (σ+) and nearly the same frequency
have to be transported to the beamline. Typically, laser beams are overlapped
by using Polarizing BeamSplitter (PBS) cubes that reflect or transmit the laser
light based on the linear polarization. As this method gives beams of different
circular polarization, this method is not suitable. Another way to combine the
beams is using mirrors that are transparent for one of the beams. With the
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Figure 3.5: (a) Schematic overview of the main components in the laser setup
and transport down to the VITO beamline. The mounting plates are indicated
by gray boxes. (b) The mounting plate for the AOMs and lenses, attached to a
translational stage.
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frequencies of the beams being so close to each other, such mirrors do not exist.
The only remaining option is to use beamsplitter mirrors that are less than
100% reflective. They are used to split the beam before and to recombine the
beams after using the AOMs. Figure 3.5 shows a schematic drawing of the laser
setup, as well as a picture of the AOMs.

To maximize the efficiency of the AOMs, two mounting plates were designed
with space for two lenses and the AOM, indicated by gray boxes in Figure 3.5a.
This mounting plate is attached to a translational stage that moves the entire
plate perpendicular to the beam path, as visible on Figure 3.5b. By moving the
lenses such that the beam enters off-center, the laser light enters the AOM under
an angle. When this angle is the Bragg angle of the crystal, the interaction
between the photons and the phonons is maximized and the AOM diffracts the
beam. The second lens collimates the beam, and also introduces the same angle
again to the light. The result is that the beam path after the second lens is
unaffected by translating the entire bench.

For these components, the AOMs used are modified MT350-A0.12-800 models
from AA Opto-Electronic and the lenses are LBF254-200-B best form lenses
from ThorLabs. Best form lenses use two different radii for their circular
surfaces, which minimize spherical aberration from the light entering the lens
off-center. This ensures the focal point is independent of the location the beam
enters the lenses.

Utilizing the setup as described here, 100 mW of laser light was converted to
80 mW of frequency shifted light for both AOMs. This 80% efficiency is also
the maximal efficiency as reported by the manufacturer.

After the transition through the AOMs is optimized, beamsplitter mirrors
are again used to overlap the beams. A 30 m long optical fiber carries the
light from the laser lab down to the beamline, where a telescope is used to
shape the beamsize. The final circular polarization is achieved by sending the
beam through a polarizing beamsplitter cube followed by a quarter waveplate.
A maximum of about 20 mW of power could be delivered to the beamline,
distributed uniformly over each laser beam.

Figure 3.5a gives an overview of the entire setup and illustrates the design to
tune the AOMs, while Figure 3.5b shows the mounting plates.
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Chapter 4

A dedicated beamline for
spin-polarizing an atom beam
from ISOLDE

Into battle walk in a line
—Sabaton, The Carolean’s Prayer

A new beamline has been constructed at ISOLDE, CERN for producing polarized
radioactive beams. In this chapter, we first present a paper describing the new
experimental setup. It is followed by more details on the design of the magnetic
fields used in the setup. The chapter ends with a description of the cooled
crystal holder used in the experiments on 35Ar.

4.1 Article I: The setup for laser spin-polarization
at VITO-ISOLDE

The following article has been submitted to Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment (preprint available on arXiv [56])
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Abstract
A beamline dedicated to the production of laser-polarized radioactive beams has been constructed at
ISOLDE, CERN. We present here different simulations leading to the design and construction of it,
as well as technical details of the full setup and examples of the achieved polarizations for several
radioisotopes. Beamline simulations show a good transmission through the entire line, in agreement
with observations. Simulations of the induced nuclear spin-polarization as a function of atom-laser
interaction length are presented for 26,28Na, and for 35Ar, which is studied in this work. Adiabatic spin
rotation calculations of the spin-polarized ensemble of atoms, and how this influences the observed
nuclear ensemble polarization, are also performed for the same nuclei. For 35Ar, we show that multiple-
frequency pumping enhances the ensemble polarization by a factor 1.85, in agreement with predictions
from a rate equations model.

Keywords: beamline, laser polarization, β-asymmetry, adiabatic rotation

1. Introduction

Spin-polarized radioactive nuclei have been a
staple of nuclear and particle physics research
since the discovery of parity violation [1]. With
the use of polarized nuclei as a probe in fields
ranging from fundamental interactions to mate-
rial and life sciences [2, 3, 4], an initiative for
a dedicated experiment at ISOLDE was started,
and a beamline was built and commissioned. Re-
sults from the commissioning of the new beamline

∗Corresponding author
Email addresses: wouter.gins@fys.kuleuven.be

(W. Gins), robert.harding@cern.ch (R. D. Harding)
1Current affiliation: EP Department, CERN, CH-1211

Geneva 23, Switzerland

have been reported in Ref. [5]. The present article
documents the technical aspects of this beamline.

Section 2 describes the mechanism of laser
polarization through optical pumping and how
the induced nuclear polarization can be observed
through the asymmetry in the nuclear β-decay.
Section 3 reports on the different parts of the
beamline, with Section 4 being dedicated to the
ion-optical simulations. The generated magnetic
fields are discussed in Section 5. Calculations
of the adiabatic rotation of the spin-polarized
ensembles of 26,28Na and 35Ar in the magnetic
fields are presented in Section 6 and compared
to the observed asymmetries. The successful use
of multiple-frequency optical pumping to achieve
higher polarization for 35Ar atoms, to be used in

Preprint submitted to NIM A December 28, 2018
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Figure 1: Optical pumping scheme in the D2 line of 28Na.
Excitations using σ+ polarized light are drawn with solid
lines, while the dashed lines indicate decay paths through
photon emission.

future fundamental interactions studies [4], is de-
scribed in Section 7 and compared with experi-
mental data. Conclusions are given in Section 8.

2. Optical pumping and β-asymmetry

The hyperfine interaction couples the nuclear
spin ~I and the electron spin ~J together to a to-
tal atomic spin ~F = ~I + ~J , which splits a fine
structure level, characterized by the J quantum
numbers into several hyperfine levels character-
ized by the F quantum numbers. Atomic popu-
lation can be resonantly transferred from one hy-
perfine level to a radiatively coupled level through
interaction with a narrowband laser. Typically, a
continuous wave (cw) laser is used. In this pro-
cess, conservation of angular momentum dictates
that the atomic spin ~F can only change by maxi-
mally one unit. The left side of Figure 1 illustrates
the five allowed hyperfine transitions for the D2
line in 28Na (32S1/2 → 32P3/2) as solid lines. The
term “optical pumping” is used when resonant ex-
citations and decay drive the atomic population
towards a specific (magnetic sub)state [6].

When the laser light is circularly polarized (σ+

or σ−), conservation of angular momentum fur-
ther imposes the restriction ∆mF = 1 or −1 (in-
dicated as solid lines on the right side of Fig-
ure 1). The decay back to the lower state is
however not bound to this rule and can proceed
with ∆mF = 0,±1 (indicated by dashed lines)
[7]. By repeating such excitation/decay cycles
many times, the population of a specific F-state
is pushed towards substates with either maximal
or minimal mF quantum numbers in the initial
state.

The number of excitation/decay cycles can
be increased by either increasing the laser pho-
ton density or by having a longer interaction
time. In a collinear geometry (as used in
high-resolution collinear laser spectroscopy ex-
periments [8]), where the particle and cw laser
beam are spatially overlapped, such a long inter-
action time is achieved by choosing an appropriate
length of the laser-particle interaction region.

The resulting atomic polarization is then trans-
ferred to a polarization of the nuclear spin
through the hyperfine interaction, assuming an
adiabatic transfer of population between the
atomic (coupled) states and the (decoupled)
eigenstates in a strong magnetic field. The nu-
clear polarization in such an ensemble of nuclei is
defined as

P =
∑
mI

w (mI)mI

I
, (1)

with w (mI) the probability that the |I,mI〉 quan-
tum state is populated after the optical pumping
process.

The nuclear polarization can be observed by de-
tecting the asymmetry in the β-decay of radioac-
tive isotopes, due to the parity violation in nuclear
β-decay [1]. The β-decay of a polarized ensemble
has a specific angular distribution that can be ap-
proximated to W (θ) ∼ 1+AP cos (θ) for allowed
β-transitions [9], where θ is the angle between the
emitted electron momentum and the nuclear spin
orientation. A is the asymmetry parameter of the
decay which depends on the initial and final spin
of the nuclear states involved in the β-decay, and
P is the polarization of the nuclear ensemble with
respect to a quantisation axis. The experimental
asymmetry (as reported in Section 7) is then de-
fined as

Aexp =
N (0◦)−N (180◦)

N (0◦) +N (180◦)
= εAP, (2)

where ε represents depolarization effects which de-
pend on several experimental factors.

For more details on spin-polarization via optical
pumping, see Refs. [10, 11].

2
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Figure 2: Schematic overview of the VITO beamline, with the main beamline components indicated. The beam from
ISOLDE enters from the top left beampipe, and the start of this beampipe is used as the start for the ion-optical
simulations. The numbers are used to indicate the coils in Table 1. Indicated in the bottom left is the axis system used
throughout this paper.

3. Beamline description

More than 1300 radioactive isotopes of more
than 70 elements can be produced at ISOLDE,
CERN, via the impact of a 1.4 GeV proton beam
on a variety of targets using different types of
ion sources [12]. The resulting ion beam is
mass-separated in the High Resolution Separa-
tor (HRS) after which it can be bunched, if de-
sired, using the ISCOOL cooler-buncher [13]. Af-
ter mass separation, the ion beam is sent to the
laser-polarization setup, which is part of the Ver-
satile Ion Techniques Online (VITO) beamline at
ISOLDE, CERN [14]. For ions or atoms having
a suitable scheme for laser optical pumping, typi-
cally the alkali and earth-alkali elements, the nu-
clear spin of the isotopes can be polarized through
application of optical pumping of an atomic hy-
perfine transition. The ion beam from ISOLDE is
sent into the laser-polarization beamline and over-
lapped with a circularly polarized laser beam to
induce nuclear polarization. After implantation
in a suitable host, placed in a strong magnetic
field, the change in β-asymmetry is observed as a
function of laser frequency, scanned across the hy-
perfine structure. Although the technique is also
applicable to ions [15], the current design is spe-
cific for working with atoms. An overview of the
layout of the entire optical pumping beamline is

shown in Figure 2.
The first element of the beamline is a 5◦ deflec-

tor equipped with a laser window, where the laser
beam is overlapped with the pulsed radioactive
ion beam. A beam diagnostics box, containing
an adjustable iris to define the beam waist and
a readout plate for the ion-current, is placed di-
rectly after the deflector. Beamline simulations of
the 5◦ deflector are discussed in Section 4.

Ø21 mm

beam pipe

Liquid cooled heatsink

Reservoir for

Na or K

Opening for

heating rods

Figure 3: 3/4 view of the CAD drawing of the CEC. The
stainless steel reservoir has 6 deep holes to house heat-
ing rods. The liquid cooled heatsink clamps onto the
beampipe ends.

The Charge Exchange Cell (CEC), housed in
3
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the Charge Exchange vacuum chamber of Fig-
ure 2 and depicted in Figure 3, is placed after the
diagnostic box, where the beam passes through
a vapor of Na or K and undergoes charge ex-
change. It contains a reservoir in the middle
where solid Na or K is deposited. The stainless
steel reservoir is heated using six RS Components
RS-8607016 220 W heating cartridges powered by
a DC power supply. The reservoir is heated to
approximately 200◦C for both Na and K in order
to produce a sufficiently dense vapor for charge
exchange [16, 17]. Neutralization efficiencies of
100% for a Na+ beam on Na vapor and 50-75%
for an Ar+ beam on K vapor have been observed.
To minimize diffusion of the Na or K vapor into
the rest of the beamline, the ends of the pipe are
kept at a lower temperature. This is achieved
using a heatsink cooled with circulating Galden®

PFPE down to 90◦C, which will ensure the ends
of the beampipe are kept above the melting point
of K (63.2◦C) and Na (97.8◦C). This minimizes
the loss of vapor to the rest of the beamline and
ensures a high vapor density in the middle. Non-
neutralized ions are deflected from the beam after
the CEC using an electrostatic deflector. A spe-
cially designed electrode arrangement (referred to
as voltage scanner, design details in Section 4)
is attached to this cell and modifies the kinetic
energy of the incoming ion beam. This changes
the velocity of the beam, and induces a Doppler
shift of the laser frequency. The relation between
the labframe νrest frequency and the frequency
νobs observed by this accelerated (or decelerated)
beam is

νobs = νrest

√
1− β

1 + β
, (3)

β =

√
1− [mc2/ (mc2 + qEkin)]

2, (4)

where m and q are the mass and charge of the par-
ticles, c is the speed of light and Ekin is the kinetic
energy. This allows a fast scanning of the hyper-
fine structure by changing the acceleration volt-
age. In Figure 4 we show the electrical diagram of
the wiring that enables this voltage scanning. The
data acquisition system (DAQ) contains a digital-
to-analog converter (DAC) and can provide a con-

trolled voltage of up to ±10 V, which is amplified
by a Kepco amplifier (model number BOP 1000M,
modified for high inductive loads) by a factor of
100. This voltage of ±1 kV (and typical precision
of 0.02 V) is then applied to the secondary wind-
ings of an isolating transformer. The insulating
transformer supplies the 230 V line voltages on
the secondary side to a DC power supply which is
then also floated by the ±1 kV. Since the biased
electrode of the voltage scanner is connected to
the base of the CEC and thus to the lower out-
put of the power supply, both elements are biased
to ±1 kV relative to the beamline ground while a
constant voltage is applied over the heating rods.

DAQ (±10 V)

x100

DC supply

Heating rods

80 V

Biased
electrode
of voltage
scannerBeamline ground

Figure 4: Simplified diagram of the electrical wiring for the
voltage scanning. The voltage scanning provides a float-
ing potential for a secondary circuit, where an isolating
transformer supplies power to a DC power supply for the
heating rods mentioned in Section 3. The data acquisition
program can supply ±10V, which is amplified by a factor
100.

Following the CEC is the optical detection re-
gion, which is a copy of the light collection region
used in the COLLAPS setup [18]. The photomul-
tiplier tubes in this detection area are used for
determining the resonant laser frequency through
optical detection of the fluorescence decay from a
stable isotope of the same element, prior to start-
ing β-asymmetry measurements on the less abun-
dant radioactive species of interest.

In the interaction region, where the optical
pumping takes place, Helmholtz coils provide a
magnetic field on the order of 2 mT along the

4

ARTICLE I: THE SETUP FOR LASER SPIN-POLARIZATION AT VITO-ISOLDE 47



www.manaraa.com

beamline axis pointing in the beam direction.
This magnetic field defines a quantisation axis
and avoids coupling of the atomic spins to possi-
ble stray fields in the environment. The minimal
length of this interaction region is determined by
the time needed for the pumping process. The
process of optical pumping with a CW laser can
be modelled through the formation of rate equa-
tions based on the Einstein formalism [19, 20, 10].
By solving this system of differential equations,
the degree of nuclear polarization P (Eq. (1)) can
be calculated for any interaction time. The D2
line in Na [5] was used as the case study. Fig-
ure 5(a) shows the hyperfine spectrum generated
with this method, while in (b) the polarization in
the most intense peak is calculated as a function
of the laser-atom interaction time (translated into
a beam line length assuming a 50 keV beam). In
both figures, a laser intensity of 80 mW/cm2 was
used as this is a typically achievable power den-
sity. Calculation of the polarization as a function
of laser intensity is shown in Figure 5(c), demon-
strating that the transition is saturated in the
simulation. The difference in maximal polariza-
tion for the different nuclei is due to the number of
hyperfine levels across which the population is dis-
tributed originally. Based on these calculations, a
length of 1.6 m was selected as a compromise be-
tween achievable polarization and available space
in the ISOLDE hall. Although the length needed
to fully polarize an ensemble depends on the Ein-
stein A parameter of the transition, 1.6 m will
give a sufficiently long interaction time for most
strong transitions for which A has a value in the
order of 107 − 108 Hz. This is illustrated in Fig-
ure 5(b) for 26,28Na and 35Ar, the first isotopes
that have been polarized with the new set-up.

A series of solenoids and a large electromagnet
are placed after the interaction region, with the
field of the solenoids acting along the beam direc-
tion and the electromagnet generating a field per-
pendicular to it. The combination of these fields
adiabatically rotates the atomic spin in the hori-
zontal plane, orienting it in the same direction as
the field of the electromagnet. This field is suffi-
ciently strong to decouple the nuclear from the
electron spin. The details of this adiabatic spin
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Figure 5: (a) Simulated hyperfine spectrum for pumping
26Na in the D2 line using σ+ polarized light at a typi-
cal laser power of 80 mW/cm2. The interaction time cor-
responds to an interaction length of 1.6 m for a 50 keV
beam. (b) The calculated polarization in the strongest
component of the hyperfine spectrum (indicated with a
dashed line in (a)) as a function of interaction length for
the different nuclear species discussed in this paper. (c)
The laser intensity dependence of the strongest compo-
nent of the hyperfine spectrum for an interaction length of
1.6 m.

Horizontal deflector

Vertical steerer

40.0 mm

R2 m

TOP VIEW

Beam direction

Figure 6: CAD drawing of the 5◦ ion-deflector. Ion beam
coming from ISOLDE (left) is bent 5◦s with a radius of 2
m to overlap the ion beam with the laser beam.
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Figure 7: (a) 1/2 section view of both configurations for the voltage scanner. The biased electrode is indicated in red,
the grounded electrode in green and the teflon insulator in blue (color online). (b) Electric potential (full line) and the
kinetic energy (dashed line) of a 60 keV beam of 39K as a function of distance using configuration 1 when 1 kV is applied
to the biased electrode. (c) Same as (b), but for configuration 2.

rotation and decoupling of the nuclear and elec-
tron spins are discussed in Section 6. A removable
sample holder and β-detectors are installed inside
the electromagnet, where the polarized ensemble
is implanted in a suitable host material. This β-
detection setup has been used before in β-NMR
studies on Mg isotopes [15].

A diagnostics box containing a wire scanner
and Faraday cup, as detailed in [12] (supple-
mented with a copper plate to detect atomic
beams), is installed after this region to provide
beam diagnostics.

4. Ion optics

Ion-optical beam transmission simulations were
performed to benchmark the effect that the deflec-
tor and voltage scanner have on the path of the
beam and the transmission that can be expected.

A standard beam of 39K+ with 3 π mm mrad
beam emittance is generated for the simulations,
as reported for the cooler-buncher ISCOOL [13].
The focal point of the beam is, prior to entering
the 5◦ deflector, optimized for maximal transmis-
sion using the quadrupole doublet that is installed
in front of it. As the doublet is not included in
the simulations, the focus is set by optimizing the
Twiss parameters in the simulation. For Gaussian

6
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Figure 8: Overview of the particle trajectories as a function of x and y location (top panel), and as a function of flight
time and deviation from the center of the beam in the y and z directions (bottom two panels). The solid black lines
indicate the area containing ±1σ of the beam, the dashed lines the location of the outermost particles The focal point
corresponds to the location at x ≈3.5 m, at a flight time of 6 µs. The axis system is the same one as used in Figure 2.

beams, the distribution in phase space is given
by an ellipse, where the orientation and shape
is given by the Twiss parameters [21]. Chang-
ing these parameters changes both the size of the
beam, as well as the focal point. The kinetic en-
ergy of the beam is set to 60 keV, which is the
maximal beam energy that can be delivered by
ISOLDE to the low energy section. For all simu-
lations, the COMSOL multiphysics software was
used [22]. The used geometry is a simplified ver-
sion of the geometry shown in Figure 2. First an
overview of all the elements included in the sim-
ulations will be given.

The first electrostatic element of the VITO
beamline in the simulations is the 5◦ deflector,
which bends the ion beam to overlap it collinearly
with the laser light. The 5◦ deflector has an inter-
nal opening of 40 mm and consists of two vertical
steerer plates and a pair of electrodes with a ma-
chined curve matching 2 m (see Figure 6). After
this, a voltage scanner (the design of which will
be treated further in this section) adjusts the ki-
netic energy of the ion beam in a range of ±1
keV. It is mounted inside the vacuum box where

the CEC is also mounted and the biased electrode
is connected to the CEC. The CEC acts as a long
collimator with a 2 cm opening, followed by an-
other collimator with an opening of 1 cm approxi-
mately 2 m further downstream. These small col-
limators guarantee a good overlap between the
particle and laser beam. As the charge exchange
process neutralizes the charged particles, the CEC
is the final electrostatic element considered in the
simulations. The tubes and chambers forming the
beamline up to this point are also present and are
grounded to provide accurate potential fields.

The design for the voltage scanner deviates
from a series of ring electrodes connected through
a resistor chain [20]. Instead, two specially shaped
electrodes define the equipotential electrical field
(Figure 7a). Two configurations of this geomet-
rical design of the shaped electrodes have been
used.

In the first configuration (Config. 1 in Fig-
ure 7a), eight triangular spikes are attached to
an octagonal mounting base. Overlapping two of
such electrodes gives a gradual and nearly-linear
change in potential experienced by the ions, as
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Figure 9: Transmission efficiency through the beamline,
simulated for both configurations of the scanning elec-
trodes, as a function of voltage applied to the scanner and
for two different voltages on the deflector. When the op-
timal voltage is applied to the 5◦ deflector (1045 V, top
plot), the beam is centered on the axis of the biased elec-
trode, while a slightly offset voltage (1050 V, middle plot)
results in slightly lower transmission since the axes of the
beam and the electrode no longer coincide. The experi-
mental transmission profile (bottom plot) agrees with the
general trend predicted by the simulations. The β-counts
have been normalised to the datapoint with the highest in-
tensity, the staggering in the data is due to the structure
of the proton beam supercycle.

shown in Figure 7b. In the second design (Con-
fig. 2 in Figure 7a), the grounded electrode is
replaced with a cylinder covering the entire scan-
ner, separated from the biased electrode with a
teflon insulator. The central beam axis thus is
more fully encapsulated and has a better defined
ground potential, resulting in a more sigmoidal
variation of the electric potential (Figure 7c). To
emulate mechanical imperfections related to the
construction, the grounding electrode was rotated
0.5◦ relative to the z-axis as defined in Figure 2.
This rotation is implemented in all simulations

for both configurations (Figure 7a). The typical
flight path of the particles is depicted in Figure 8,
where the extent of the particle beam is given.
The collimators are visible as the sharp cuts at 3
and 7 µs.

The transmission of the beam through the
beam line as a function of scanning voltage has
been simulated for the two different designs of the
voltage scanner (Figure 9a). A second set of sim-
ulations were performed with a slightly detuned
5◦ deflector (Figure 9b). Both designs have been
constructed and used in experiments, such that
the transmission simulations can be compared to
actual data (Figure 9c).

The transmission data for the first configura-
tion was gathered in the commissioning experi-
ment [5] by means of the total β-counts from a
26Na beam measured as a function of scanning
voltage. During an experiment on β-NMR in liq-
uid samples performed in May 2018 [3], the second
configuration was used for the first time and the
data was gathered in the same way.

The simulations (top two panels of Figure 9)
and the online data (bottom panel of Figure 9)
show very good agreement. The oscillation in
the counts is due to the proton supercycle. Pro-
ton pulses are separated by an integer number
of 1.2 seconds, but the time between subsequent
pulses can vary. A rapid succession of pulses
causes build-up and a variation in yield, which
can only be averaged away by measuring over
many supercycles. In both the measurements and
the simulations, the first configuration has a se-
vere beamsteering effect, reducing the transmis-
sion efficiency as a function of scanning voltage.
The second configuration has no such effect, ow-
ing to the better ground potential definition. The
simulations with a detuned 5◦ deflector show that
this can result in a slight slope for the second con-
figuration and a shift in the peak location for the
first. These features are also present in the data.

Based on comparisons of the beam current on
Faraday cups located before and at the end of
the beamline, a maximal transmission of ∼60%
was observed in May 2018. As this transmission
is heavily dependent on the exact emittance of
the beam, this small deviation from the simulated
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value of 75% is not unreasonable.

5. Design of magnetic fields

The magnetic field generated in the beamline
is separated in three separate sections (see Fig-
ure 2), each with their own requirements:

1. the interaction region (labelled 1 and 2 in
Figure 2).

2. the transitional field region (labelled 3).
3. the main magnet region.

The interaction region has to provide a weak, uni-
form magnetic field over the entire beam path that
needs to compensate for stray fields in order to
maintain the laser-induced atomic spin polariza-
tion. The field should be small enough however,
not to induce a large splitting of the magnetic sub-
states of the hyperfine levels. A magnetic field of
approximately 2 mT fulfills both requirements.

Once the radioactive beam is implanted, the
magnetic field has to be strong enough to decouple
the nuclear spin from random interactions with
potential (defect-associated) electric field gradi-
ents in the crystal. The installed electromagnet
can generate a field of up to 0.7 T. This value de-
pends on both the current supplied to the magnet
as well as the distance between the magnet poles,
which can be varied. With a maximal pole dis-
tance of 8 cm, different setups for holding samples
and placing detectors can be accommodated.

Since the field generated by the electromagnet
is perpendicular to the beamline axis (which is
also the atomic spin orientation axis), the transi-
tional field region has to be tuned to provide adi-
abatic rotation of the oriented atomic spins. The
field previously designed for the β-NMR setup at
COLLAPS (see Ref. [23]) was used as a model for
this.

For designing the magnetic field of both the in-
teraction and the transitional region, simulations
were made in COMSOL. As a design choice, four
octagonal coils arranged in a Helmholtz config-
uration are used for the interaction region (see
Figure 2). The light guides of the β-detection
system prevents us from putting a fifth octagonal
coil. Therefore, a solenoid with 11.25 cm radius
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M
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Transitional simulation (scaled by 89%)
Main magnet field on
Both on

Figure 10: Comparison between the simulation (solid line)
and measurements (markers) of the magnetic field. The
simulation is scaled down by a global factor to account for
a difference between the read-out current and the current
applied to the coils. The discrepancy above -0.2 m is due
to the residual magnetization of the magnet.

extends the interaction region. Several smaller
solenoids directly wound onto a beampipe con-
tinue past this point and form the transitional
field. The final parameters of all solenoids are
given in Table 1.

In order to compare the simulated magnetic
field profile with reality, magnetic field measure-
ments with a 3D Hall probe were made in three
circumstances: the transitional field and the elec-
tromagnet on (red wide diamonds in Figure 10),
only the main magnet powered (green dots) and
only the transitional field powered (blue thin di-
amonds). Due to the unknown configuration in
the main magnet, only the transitional field could
be simulated in COMSOL (full line). The good
agreement between simulation and measurements
suggests a good correspondence between the coil
parameters in the simulation and the physical
coils.

6. Adiabatic rotation

In the experimental set-up, the atomic spin-
polarization axis is along the (laser) beam line.
On the other hand, for the β-asymmetry measure-
ments, the nuclear spin-polarization axis should
be along the direction of the strong holding field in
which the implantation crystal is mounted. This
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Table 1: Optimized parameters for the coils as determined with COMSOL simulations. A wire thickness of 0.8 mm was
used through all simulations. For the Helmholtz coils, the radius refers to the inscribed circle. The length refers to the
dimension of the coil along the beamline axis. The number after the description refers to the labelling in Figure 2.

Helmholtz coils (1) Large solenoid (2) Small solenoids (3)
1 2 3 4 5

Current [A] 1.6 1.0 2
Windings [#] 1000 900 10 65 154 1100 225

Radius [mm] 400 112.5 20.5
Length [mm] 32 315 40 60 40 154 66

field is perpendicular to the beam line, in order to
allow for β-detectors to be mounted at 0 and 180
degrees with respect to the field direction. From
the rate equation calculations of the atomic pop-
ulation, the nuclear spin polarization is extracted
under the assumption that the decoupling field
is oriented along the spin-polarization axis. As
we apply a gradually increasing magnetic field in
order to rotate (and decouple) the nuclear and
electron spins adiabatically into the strong field
direction, changes in the nuclear spin polarization
due to the adiabtic rotation process are possible.
To this end, simulations of this adiabatic spin ro-
tation have been performed. The magnetic field
profile in the three directions has been measured
and used in these simulations, for which the total
field strength along the beam line was shown in
Figure 10.

Quantum mechanical calculations, starting
from the interaction Hamiltonian including the
hyperfine interaction and the two Zeemann inter-
actions with ~I and ~J . The used Hamiltonian is of
the form

H (t) = A~I · ~J + gLµb
~B · ~J − gµN

~B · ~I, (5)

where A is the magnetic dipole hyperfine param-
eter, ~B is the magnetic field vector, ~I and ~J are
the nuclear and electron angular momenta, g and
gL are the nuclear and Landé g-factor respectively
and µB and µN are the Bohr and nuclear magne-
tons.

A similar Hamiltonian has been studied before
in the context of particles moving through a mag-
netic field, resulting in a time-varying field in the
reference frame of the particle [24]. The derived

differential equations have been solved for the ex-
plicit case of a constant magnetic field precessing
about the z-axis. Here, the magnetic interaction
between the spins A~I · ~J has been added. Simu-
lation code was written for use with QuTiP [25]
which generates and solves the Hamiltonian for
arbitrary nuclear species, each having different
g-factors, spins and hyperfine parameters. The
measured magnetic field is included in this Hamil-
tonian.

The state vector is initialized in the atomic
ground state with populations in the ~F and mF

states as given by the rate equations after the op-
tical pumping process. The interaction strength
of the magnetic field represents the changing mag-
netic field as the particle beam travels through
the setup at a certain speed. The measured mag-
netic field as plotted in Figure 10 is used as in-
put for ~B, aside from the first few cm of flight
path. Here, the magnetic field components per-
pendicular to the beamline have been suppressed.
Around 0.1 µs, the perpendicular components are
no longer suppressed and the spin vectors start
precessing around the magnetic field. The varying
oscillation periods for the simulated isotopes are
mainly due to the different hyperfine interaction
strengths. The spin dynamics are then calculated
by solving the Schrödinger equation with the pre-
vious Hamiltonian. Experimental values for nu-
clear parameters in these equations were taken
from Refs. [26] and [27]. The calculated flight
time for the beam from the start of the transi-
tional magnetic field to the implantation host is
extended to also include a period where the beam
is stopped in the host. The first period (the dy-
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Figure 11: Calculated change in the nuclear spin polariza-
tion along the x, y and z directions (dotted, dashed and
full lines) due to the spin rotation from along the beam
axis (x) to along the main field axis (y). The black full
lines indicate the time at which the crystal site is reached
by the beam: differences are due to mass and kinetic en-
ergy differences.

namic field region) is 2/3 of the total time solved
for, while the implanted period (the static field
region) accounts for 1/3 of the time. More details
of the calculation can be found in Ref. [11].

The validity of the simulations has been veri-
fied by comparing the observed asymmetries for
26,28Na to the asymmetry calculated on the one
hand by the rate equations (neglecting spin ro-
tation) and on the other hand from the quantum
mechanical simulations that include the spin rota-
tion process. Figure 11 shows the calculated pro-
jection of the nuclear spin as a function of time

Table 2: Calculated and observed nuclear spin polariza-
tion of 26,28Na. Experimental data taken from Ref. [5].
The quantum mechanical calculation is the average y po-
larization in Figure 11 after implantation, the rate equa-
tion results are from a direct application of the adiabatic
approximation to the rate equation populations.

QM calc. Rate equation Experiment
28Na 77% 83% 59%
26Na 50% 58% 39%

Ratio 1.54 1.43 1.51

along the three axes. Averaged over the implanted
period, the nuclear spin projection along the main
field axis (dashed line) is calculated to be 77% for
28Na and 50% for 26Na.

Table 2 presents the calculated nuclear spin po-
larization from both the rate equations assuming
perfect adiabatic rotation and the quantum me-
chanical calculations. The observed asymmetry
ratio between 26Na and 28Na matches the quan-
tum mechanical calculation, although the abso-
lute number is too high.

Simulations have also been made for the adi-
abatic rotation of maximally polarized 35Ar (top
panel of Figure 11, see next section for details), in-
dicating no loss in nuclear spin polarization from
the rotation process.

7. Multiple-frequency pumping

For most elements, it is not possible to achieve
100% nuclear spin polarization using only one
laser frequency in the pumping process. E.g.
in the case of 35Ar, one of the isotopes envis-
aged for fundamental interaction studies [4], sim-
ulations show that the maximum achievable nu-
clear spin polarization using a single laser tran-
sition is 67% for a laser power density of 80
mW/cm2. This pumping scheme uses the 811
nm atomic transition (1s5 → 2p9) that starts
from the metastable (1s5)J = 2 state which is
populated in the charge exchange process [28].
The hyperfine interaction with the nuclear spin
of 3/2 leads to the metastable population be-
ing distributed among four hyperfine levels (see
Figure 12). Thus, when using only one laser
transition in the optical pumping process, the
maximum achievable atomic (and nuclear) spin-
polarization will be limited. This can be over-
come by using multi-frequency optical pumping
to simultaneously excite more than one hyperfine
transitions. The same concept has already been
applied at the TRIUMF facility for the polariza-
tion of Li, where EOM’s were used to induce side-
frequencies in the range of ±400 MHz to the main
laser beam frequency [29].

In order to estimate the possible gain in nuclear
polarization using multiple-frequency pumping,
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we performed simulations using the rate equations
(details to be found in Ref. [11]). In these simu-
lations, the nuclear spin polarization is calculated
as a function of laser frequency, assuming opti-
cal pumping with two additional laser frequencies.
The simulations have been performed for 35Ar,
the hyperfine parameters of which have been esti-
mated (Table 3) based on its known nuclear mo-
ments [27] and the known hyperfine parameters of
39Ar [30]. Adding two laser frequencies, at +325
MHz and +378 MHz from the main frequency (in-
dicated in red in Figure 12), it was found that by
tuning the fundamental beam frequency to the
7/2 → 9/2 transition, nearly 100% nuclear po-
larization can be achieved, much higher than the
67% estimated for excitation with a single laser
frequency.

This was verified experimentally, using a 35Ar
beam produced by a 1.4 GeV beam onto a CaO
target at ISOLDE. The multi-frequency pumping
was realized by using two acousto-optic modula-
tors (AOMs), which can each produce a side band
frequency in the required ranges of 300-400 MHz
by applying a fixed RF-frequency to the crystal
inside the AOM. This shifts the frequency of the
incoming laser light by the same value. For details
on the setup of the AOMs, see Ref. [11].

The observed hyperfine spectra, using either
one laser frequency or all three laser frequencies
simultaneously, are shown in Figure 12. The fre-
quencies were varied by scanning the voltage ap-
plied to the voltage scanner, thus scanning all
incident laser frequencies simultaneously. The
induced nuclear spin-polarization is observed by
measuring the asymmetry in the radioactive β-
decay after implantation in a suitable crystal, as
outlined before. The spectra shown in Figure 12

Table 3: The hyperfine parameters of 35Ar, deduced from
the measured hyperfine parameters of 39Ar in the same
laser transition [30] and the known 35Ar nuclear moments
[27].

A [MHz] (calc.) B [MHz] (calc.)

1s5 (J = 2) 265.8(28) 83(25)
2p9 (J = 3) 125.6(12) 80(19)
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Figure 12: Top: Hyperfine structure of the 811 nm tran-
sition with indicated allowed transitions. Using the hy-
perfine transitions 7/2 → 9/2, 5/2 → 7/2 and 3/2 → 3/2
(marked in red) saturates the polarization of the ensem-
ble. Bottom plots: experimental spectra for both single-
and multi-frequency pumping. Both spectra were fitted
simultaneously to the rate equations. The laser power in
the main beam was set to be a shared fit parameter, while
the hyperfine parameters were fixed to the derived value
(see Table 3). The transitions in the top are connected
with their location in the single-frequency pumping spec-
trum. The x-axis gives the change in frequency of the
fundamental laser beam, resulting in additional peaks in
the multi-frequency spectrum at ∼ 400 MHz to the left of
each peak.

have been recorded by implanting the polarized
35Ar beam into a NaCl crystal kept at a tempera-
ture of 15(5) K, where the relaxation time was
observed to be longer than the halflife of 35Ar
(1.78 s).. The signal height in both spectra is sig-
nificantly different, as can be seen clearly in e.g.
the 7/2 → 9/2 transition, for which the observed
asymmetry increases by almost a factor of 2.

In order to quantify the observed gain in signal
strength (and thus spin-polarization), the data
have been fitted using the rate equations that
were implemented using the SATLAS Python
package [31]. In the fitting procedure, the laser
power (determining the linewidths), the centroid
of the spectrum and the scaling (which the en-
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tire spectrum is multiplied with) were left as free
parameters, while the A and B factors as given
in Table 3 were kept as fixed values. Both spec-
tra were fit simultaneously with the same value
for the laser power, thus ensuring the correlations
due to shared parameters were propagated cor-
rectly when determining the ratio of the signal
strengths.

Excellent agreement is found between the ob-
served spectra and the calculated β-asymmetry
spectra as a function of the laser frequency, both
for the single and triple laser-atom interaction
systems. This gives confidence in the predictive
power of this simulation package, such that it
can be used in the future to optimize the laser
polarization experiments. From the fitted signal
strengths in both spectra, we find an increase in
polarization of a factor 1.85(3).

The maximal asymmetry signal that can be
observed requires careful evaluation of the εA
term in the angular distribution. The asymme-
try parameter A is known to be 0.43 [32]. The
observed asymmetry is further reduced by sev-
eral factors, all included in the ε. That includes
the distribution of the ensemble among the dif-
ferent fine structure levels after charge exchange
and the solid angle coverage of the β-detectors.
The evaluation of these factors is still ongoing.
Note that the observed β-asymmetry in the largest
peak amounts to nearly 1.5% using all three laser
beams for pumping. This is the largest observed
asymmetry for 35Ar until now. Previous studies,
using momentum selection in fragmentation reac-
tions to select a polarized beam, reported a max-
imum of 0.5% in KBr at 20 K [33].

8. Conclusion

To answer the demand for accessible spin-
polarized radioactive nuclei, the VITO beamline
at ISOLDE was built as a dedicated setup. It is
an adaptable beamline delivering highly polarized
nuclei to a central detection point.

Beamline simulations agree with the observed
transmission efficiency of 60%. The experimen-
tally observed beamsteering effect seen for both

designs of the voltage scanner is explained by the
simulations.

The series of magnetic fields provide an effi-
cient adiabatic rotation and decoupling of the nu-
clear spin. Rotation calculations agree with the
observed asymmetry ratios. The rotation calcu-
lations can be repeated for different species pro-
vided the necessary nuclear parameters are avail-
able.

Finally, multi-frequency pumping has been es-
tablished as a viable technique to increase the
asymmetry signal that can be expected from the
radioactive species. Tests on 35Ar show that the
increase and spectrum can be reproduced by the
rate equation model.
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4.2 Magnetic field and coils design

The sequence of magnetic fields experienced by the particles in the beamline is
important to generate and maintain maximal polarization. This section details
the design of the various coils and solenoids. The main electromagnet (labeled
(4) in Figure 4.1) is not included in any of the designs or simulations.

The magnetic field needs to be homogeneous over the volume traversed by
the beam, and assembly of the coils themselves and the beamline must still
be possible. The final physical dimensions, achieved after optimization in
COMSOL, have already been given in Table 1 in the article. Figure 4.1 sketches
the final setup of all coils and solenoids.

The optical pumping region is covered by large coils organized in a Helmholtz
construction. This gives a sufficiently homogeneous magnetic center and
minimizes the amount of material required. The circular shape was
approximated by the circumscribed octagon. With a radius of 400 mm, only
4 coils were needed to introduce a homogeneous field of 2 mT along the 1.2 m
optical pumping tube. The large size does not hinder the assembly of the
beamline as all pieces fit inside with sufficient extra space. Such a large radius
did increase the required number of windings on each coil.

As the original design of the b-detectors included long light guides, the detectors
would physically interfere with a fifth coil to complete the required 1.6 m optical
pumping region. A long solenoid therefore forms the final piece of the optical

1111 2

3 4

Figure 4.1: The magnetic fields at the VITO beamline are generated by (1)
Helmholtz coils surrounding the optical pumping region, (2) a large solenoid to
link the optical pumping region and the transitional field region, (3) a series of
small solenoids to create the transitional field region for adiabatic spin rotation
and (4) the main electromagnet to decouple the nuclear and electron spin.
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Figure 4.2: CAD rendering of the solenoids. The large solenoid (silver reflective
cylinder) has a much larger radius than the beamline and contains one of the
small solenoids (copper cylinders) within its volume.

pumping region. Inside the volume of this solenoid, the transitional field
solenoids start already (see Figure 4.2).

The design of the transitional field (based on the design as given in Ref. [32])
calls for several sections of solenoids, all of which are used with the same current.
Then, the relative intensity of each section is determined by the number of
windings only. With a 1 cm spacing in between two sections of solenoids, the
number of windings has been optimized to match the field profile generated for
the COLLAPS setup. The resulting design can be seen in Figure 4.3a, where
the magnetic field is shown as a blue graph on top of a drawing of the coils.
Figure 4.3b shows the placement of the Helmholtz coils.

A comparison between the simulated and measured fields was already given in
Section 4.1, Figure 9.

4.3 Cooled crystal holder

Measurements on polarized 35Ar performed at NIRS HIMAC [35] showed a
strong temperature dependence of the observed b-asymmetry. The normal
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Figure 4.3: (a) The designed magnetic field, superimposed on a drawing of the
coil locations. (b) A picture of the installation of the Helmholtz coils. The
aluminium ISO-F 160 beamtube fits comfortably inside the volume of the coils.



www.manaraa.com

COOLED CRYSTAL HOLDER 61

crystal holder was therefore replaced by a holder attached to a closed cycle He
cold head. The new crystal holder is shown schematically in Figure 4.4.

This cold head provides cooling capability down to approximately 10 K, and
an additional heat shield is installed around the crystal holder. As this cold
shield is cooled first, it will gather most of the remaining gases in the beamline
and delay the onset of condensation on the crystal. Holes are drilled in the
front (�12 mm) and the side (�20 mm) of the cold shield to respectively let the
incoming atomic beam pass and let b-particles through.

In order to control the temperature of the crystal, a resistive heating wire is
wound around the central rod. A temperature sensor on the central rod near
the crystal mount provides input for a PID loop that controls the output of the
heating wire. The value of this sensor is used as the temperature of the crystal
during the measurements.

C ( 1 : 1 )

6

4

1

2

3

5

Figure 4.4: Inventor 1/2 view rendering of the custom crystal holder for the
Ar beamtimes. Indicated are (1) the �5 cm window in the chamber for the
b-particles, (2) the �12 mm opening in the heat shield for the incoming beam,
(3) the �20 mm opening in the heat shield for the b-particles, (4) the 1cm x 1cm
crystal kept in place with spring-mounted clips, (5) the mounting rod connected
to the cold head and (6) the copper heat shield, also connected to the cold head.
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Chapter 5

Experimental results

We will not find if we don’t seek; We will not know
if we don’t peek

—Epica, The Quantum Enigma - Kingdom Of
Heaven Part II

Here, an overview will be given of the experimental details of the two
experimental runs on 35Ar at the VITO beam line, performed in April and
August 2017. Before detailing the measurements, it is explained how the isotope
shift of 35Ar relative to 40Ar is estimated. This is necessary to choose the correct
laser frequency for the optical pumping process. The extracted b-asymmetry
and relaxation times in different crystals will be discussed in Chapter 6.

5.1 Experimental details

5.1.1 Production of Ar beam

Both runs made use of a plasma ion source with a CaO target to create 35Ar
ions, from which a yield of 6 × 106/µC was expected according to previous
measurements listed in the yield database of ISOLDE [57]. New measurements
were performed by the target group in April [58] and in August, giving the same
order of magnitude in yield in August but a lower yield in April (see Table 5.1).

63
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Figure 5.1: b-counts in the tape station as a function of time for 35Ar, with the
first 0.6 s containing ≈ 80% of the total yield. The b-counts are not corrected
for the half-life and transport time to the tapestation, while the total integrated
ion yield is. Data and analysis results courtesy of the target group [58].

A bottle of Ar gas was attached to the ion source, to provide a source of stable
isotopes. Natural Ar gas is 99.60% 40Ar, 0.33% 36Ar and 0.06% 38Ar, so all
three stable isotopes could be delivered to the setup in sufficient quantities
without the use of proton induced production. The HRS separator was used in
both instances, allowing the possibility to use continuous as well as bunched
beams by using the ISCOOL cooler-buncher.

For both runs, the high-voltage platform was set to 50 kV relative to beamline
ground.

Table 5.1: The settings and target details for both experimental campaigns.
Yield check for the August campaign was performed by measuring the current
on a Faraday Cup (FC), while the April result was done with the tape station.

Target HV Target heating Line heating 35Ar yield
April CaO, #596 50 kV 200 A 405 A 8 × 105/µC
August 215 A (5 × 106/µC)
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5.1.2 Timing settings

The experiment makes use of several different time signals in order to control
different aspects of the setup:

• The first time signal is the arrival of the proton bunch on the target, also
called the proton pulse. This pulse is provided by ISOLDE equipment
and is used to trigger the other time signals which are generated by the
VITO experiment. The time between proton pulses to ISOLDE is always
an integer amount of 1.2 s.

• A time gate during which ions are extracted from the target, called the
beam gate. As the release curve in Figure 5.1 shows that the majority
of the Ar ions are extracted within the first 0.5 s, the beam gate will be
limited to this time in order to suppress the presence of slower released
contaminants. Note that the typical time between subsequent proton
pulse impacts was restricted to 4.8 s.

• When performing optical measurements, the ISCOOL cooler-buncher [59,
60] was used to accumulate the stable Ar ions and release them in bunches
of ≈3 µs FWHM. To this end, a timing signal can switch quickly between
the trapping and release potentials of the buncher (see Figure 5.2). This
time signal is characterized by an accumulation time tacc and a release
time. This release time should be long enough for the bunches to leave
ISCOOL.

• Also during the optical measurements, a time gate is applied to the signal
from the optical PMT’s to remove the background counts registered when
the bunches are not in front of the PMT’s. This time gate is of the order
of the bunch length.

All these timing signals were controlled by the digital delay pulse generator
(Quantum Composers 9520 series [61]) installed at COLLAPS.

In the case of optical measurements on stable isotopes, no protons were directed
onto the target to induce production. The proton pulse was therefore not
used as a trigger, but the pulse generator ran continuously. As the optical
measurements used a bunched beam and a time gate on the PMT signals, the
combination of the accumulation time tacc in ISCOOL and the length of the
time gate tgate gives a background reduction factor of tacc/tgate. For the stable
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Figure 5.2: ISCOOL consists of segmented electrodes (top), allowing a gradient
in the electric potential (bottom). The ions can be trapped and accumulated
by applying a trapping potential. Figure taken from Ref. [60].

isotopes (the timing of which is illustrated in Figure 5.3), an accumulation
time of 4.9 ms and a gate width of 15 µs was chosen, resulting in a background
reduction of ≈ 327.

When performing measurements on radioactive 35Ar, the pulse generator was
triggered by the proton pulse arriving at ISOLDE. ISCOOL was not used to
bunch the beam and was set to “continuous mode” by not applying the trapping
potential. The beamgate now controls how long the beam implants in the
crystal. Figure 5.4 shows the timing used for relaxation time measurements in
August. The same pattern is used for measurements of the hyperfine spectrum
using b-asymmetry, except the beamgate is open for 1 s. In the b-asymmetry
spectrum measurements, the total time-integrated number of counts is recorded,
while the relaxation measurements integrate the number of counts over smaller
timebins. In order to have enough activity to reach sufficient statistics but
have minimal effect from the release curve, a beamgate on the order of 0.5 s
was chosen for the relaxation measurements, while the longer beamgate for
the b-asymmetry spectrum measurements maximizes the activity of 35Ar and
suppresses slower released contaminants.
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Figure 5.3: For bunching 40Ar, the ions were accumulated in ISCOOL for 4.9 ms
and then released. The gate on the signal of the PMTs starts 39.5 µs after
release of the bunch and is 15 µs long. After ISCOOL closes, the beamgate
briefly closes and the cycle repeats continuously. 36,38Ar used different flight
times only.
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Figure 5.4: For measuring relaxation times of 35Ar, only the beamgate was
controlled and opened for 0.5 s after each proton pulse. Scans of the hyperfine
spectrum using b-asymmetry opened the beamgate for 1 s instead.
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5.2 Analysis method

For the analysis of the different spectra, a combination of χ2 and Maximum
Likelihood Estimation (MLE) routines have been employed. The Python
package SATLAS (Statistical Analysis Toolbox for LAser Spectroscopy),
developed in the course of this PhD, has been used to perform the analysis.

The development of the library led to a publication describing the software in
the journal Computer Physics Communications [62], which is included here as
article II.

5.2.1 Article II: Analysis of counting data: development of
the SATLAS Python package
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a b s t r a c t

For the analysis of low-statistics counting experiments, a traditional nonlinear least squaresminimization
routine may not always provide correct parameter and uncertainty estimates due to the assumptions
inherent in the algorithm(s). In response to this, a user-friendly Python package (SATLAS) was written to
provide an easy interface between the data and a variety of minimization algorithms which are suited
for analyzing low, as well as high, statistics data. The advantage of this package is that it allows the user
to define their own model function and then compare different minimization routines to determine the
optimal parameter values and their respective (correlated) errors. Experimental validation of the different
approaches in the package is done through analysis of hyperfine structure data of 203Fr gathered by the
CRIS experiment at ISOLDE, CERN.
Source code: https://github.com/woutergins/satlas/
Documentation: https://woutergins.github.io/satlas/
Program summary
Program Title: SATLAS
Program Files doi: http://dx.doi.org/10.17632/3hr8f5nkhb.1
Licensing provisions:MIT
Programming language: Python
External routines/libraries: NumPy, SciPy, LMFIT, Pandas, NumDiffTools
Nature of problem: Fitting data from a counting experiment to extract parameter information.
Solution method: Supply a modular library with fitting routines using pre-implemented goodness-of-fit
statistics for counting data under different circumstances.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Research on exotic nuclei is one of the cornerstones of contem-
porary nuclear physics [1]. These exotic nuclei are produced with
very low yields, resulting in recorded spectra with low count rates
(e.g. hyperfine structure spectra, gamma spectra, etc.). In order to
extract accurate results from these low statistics datasets, adopting
a correct analysis and error determination method is essential.

Traditional data fitting relies on the use of χ2 minimization
techniques. One of the assumptions underlying these techniques

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author.
E-mail addresses: wouter.gins@fys.kuleuven.be (W. Gins),

ruben.degroote@fys.kuleuven.be (R.P. de Groote).

is that the distribution of the experimental uncertainties is ap-
proximately Gaussian. Due to the Poisson distribution of counting
data [2], the validity of this assumption has to be investigated,
especially in the low statistics limit of interest. In this article, we
present the literature on the equations used to fit data and perform
an uncertainty analysis. The suitability of the different approaches
is investigated using the custom-written Python package ‘‘Statis-
tical Analysis Toolbox for LAser Spectroscopy’’ (SATLAS). SATLAS
started as a project to provide a single package that combines
several statistical formulas typically used in the analysis of laser
spectroscopic results. It grew into a cohesive unit for fitting data,
analyzing results and some convenience functions for visualiza-
tion, gathering all findings in one location. The selected code ar-
chitecture allows easy integration of user-definedmodel functions,
so this toolbox is easily extended to other physics problems, such
as the analysis of low-statistics gamma-ray spectra. Emphasis lies

https://doi.org/10.1016/j.cpc.2017.09.012
0010-4655/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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on the ease of use and clear documentation. A major advantage of
this approach for fitting and model definition is that the results of
different experiments can be directly compared.

In the following section, the equation optimized while fitting a
model to experimental data is derived from the theory of Maximal
Likelihood. Section 3 describes the different components of the
SATLAS package which implement the statistical formulas derived
in Section 2. Several approaches for calculating uncertainties on the
parameters are explored through a toy hyperfine structure dataset,
after which the package is tested on recent hyperfine spectra
of203Fr data. This illustrates both the capabilities of the package as
well as the difference that can arise from different minimization
and error analysis approaches. The end result of both investigations
is summarized in the conclusion.

2. Fitting of counting experiments

As already argued in 1984 by Baker [3], fitting histograms of
counting data requires a different χ2 formula than for other types
of data. Given the continuous push towards the study of weakly
produced radioactive isotopes, these results are becoming more
relevant. Therefore, we briefly summarize here the results of Baker
in order to introduce the different minimization procedures that
we integrated into our SATLAS package.

2.1. Cost function

When extracting results fromdata, the objective is often finding
the best fittingmodel function. This function describes the expected
response given an input variable and a number of parameters,
denoted by f (xi). To select the best fitting curve, the cost function
is calculated, which assigns a numerical value to the agreement
between the model function with the current set of parameters
and the experimental data. The selection of the model function
depends on the physics involved in the experiment, and is thus not
treated here. In the SATLAS package, the user can insert the model
function(s) that is appropriate for the problem being investigated.

The traditional cost function for performing nonlinear least-
squares fitting is the weighted χ2 formula:

χ2
=

N∑
i=1

(
yi − f (xi)

σi

)2

, (1)

whereχ2 is to beminimized. Here, yi is the experimental value and
σi the uncertainty. This formula can be derived from the formalism
of maximum likelihood [4] by constructing a Gaussian probability
distribution around each data point, with the width of the distri-
bution given by the experimental uncertainty. The deviation of the
model function from each data point, calculated in units of σi, is
then optimized. This maximizes the probability that the data is
described by the model.

In counting experiments, the uncertainty on each data point is
taken as the square root of its value, which is an approximation of
the underlying Poisson distribution [2]. The formula then becomes

χ2
=

N∑
i=1

(
yi − f (xi)

√
yi

)2

. (2)

However, for spectra with a limited number of counts, approx-
imating σi in this way imposes an inherent problem. In such a
limit, a data point of 0 counts is likely to be observed which would
imply σi = 0, giving rise to infinities in the formula. To avoid this
problem, the minimum value of σ is approximated as 1.

Another interpretation of Eq. (1) enables a different way of cal-
culating σ . The model function f (xi) can be seen as an estimation
of the mean value for the distribution fromwhich the data point is

Table 1
Comparison of computational time needed for fitting and calculating the Hessian
uncertainty estimate with different methods. The input data is the generated data
presented in Section 2.3. The tested methods are available from the LMFIT package,
and the time was measured for χ2 fitting only.

Numerical method Time [ms] Relative speed

Levenberg–Marquardt 24 834
SLSQP 370 54

L-BFGS-B 423 47
Powell 487 41

Nelder–Mead 581 34
CG 2148 9

TNC 2460 8
COBYLA 20024 1

drawn. Using this interpretation, σi should be given by the square
root of f (xi), which is in general not zero. This results in:

χ2
=

N∑
i=1

(
yi − f (xi)
√
f (xi)

)2

. (3)

However, in the limit where many data points report 0 counts
(such as in a background-free experiment with a low amount of
signal counts), neither approach holds. Rather than using cost func-
tions which approximate the Poisson distribution as a Gaussian, a
more suitable cost function has to be derived. Calculating the log-
likelihood given a Poisson distribution around f (xi) instead of a
Gaussian, the simplified formula is found to be

L (yi, f (xi)) =

N∑
i=0

yi log (f (xi)) − f (xi) . (4)

Since most algorithms are developed to find a minimum rather
than a maximum, the negative log-likelihood is used in computer
programs.

One of the issues with this formula is its form: as it cannot be
expressed as a sum of squares, the standard Levenberg–Marquardt
algorithm cannot be used [5]. This negatively influences the com-
putation time needed. Indeed, as summarized in Table 1, the LM
algorithm is a factor of 15 faster than the follow-up, and a factor of
25 faster than the well known Nelder–Mead method.

Fig. 1 shows the result of Eqs. (2)–(4) when calculating the
best fit function to a Gaussian dataset with different statistics.
The original χ2 formula (2) builds an expected distribution around
the data point, while the modified formula (3) and the likelihood
formula (4) take advantage from the knowledge of the Poissonian
nature of a counting experiment. In the dataset with 10 samples,
it is clear that the drawn probability distributions each offer a
different contribution to the cost function, while the contributions
are practically the same in the dataset with 500 samples. This
illustrates that low-statistics data need to be treated with non-
standard minimization techniques.

2.2. Cost function modifications

Several reasons exist for further modifying the cost function.
Two cases will be discussed here: taking uncertainties of the
variable into account (errors on the x-axis), and adjusting the fit
procedure to consider a known literature value for one (or more)
parameter(s).

2.2.1. Errors-in-variables
For some datasets, a measurement uncertainty on the variable

is non negligible. In the current literature [6,7], the method of
effective variance is the most common. Linearizing the response

70 EXPERIMENTAL RESULTS
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Fig. 1. Fitting of data drawn from a Gaussian distribution (µ = 5, σ = 1) with the
differentmethods for 10 samples (top) and 500 samples (bottom). The shaded areas
represent the probability distributions, with the line maximizing the probabilities
for all datapoints at the same time. Notice the three distinct fits for the top figure in
the inset. In the high-statistics dataset in the bottom figure, all of the minimization
procedures give the same result.

function and assuming no correlation between the scatter of the
variable and the response observable, the effective variance is cal-
culated as

σ 2
i = σ 2

yi +

(
df (xi)
dxi

σxi

)2

(5)

and the weights in the χ2 formula are adapted to this new calcu-
lation.

An alternative description relies on probability theory instead
of calculus as the effective variance method does. This approach is
based on the work of Hsiao [8]. The joint distribution of variables x
and y is given by

Pxi,yi (x, y) = Pyi (f (x)) Pxi (x) . (6)

In order to convert this expression into a usable fitting formula, a
likelihood has to be calculated. Integrating over x and taking the
experimental data into account gives

L (yi, f (xi)) =

∫
+∞

−∞

Py (yi|f (x)) Pxi (x) dx. (7)

This integral can be converted into a convolution integral of the
form

L (yi, f (xi)) =

∫
+∞

−∞

Py (yi|f (xi + θ)) Pθ (θ) dθ. (8)

This convolution integral is implemented in SATLAS, with the
assumption that Pθ is given by a Gaussian distribution. Due to the
high computational cost of evaluating this convolution integral,
this approach is not used by default.

2.2.2. Known values of parameters
In some cases, the value of one of the parameters is already

known from other measurements. When this occurs, there is the
option of either fixing the parameter in question to the known
value (thus reducing the number of parameters) or to include the
known value in the cost function. By doing so, the fit takes the
previous data into account.

In the χ2 formula, this is achieved by adding each of the known
parameter values as an additional data point to the experimental
data:

χ2
mod = χ2

+

N∑
i

(
alit − afit

σa

)2

, (9)

with i running over each parameter a for which the literature
value and uncertainty are known. For the likelihood formula, the
modification has the same purpose and is of a similar form. The
log-likelihood becomes:

Lmod = L −

N∑
i

(
alit − afit

)2
2σ 2

a
. (10)

Modifications like these are well known in Bayesian statistics and
are referred to as priors [9].

2.3. Uncertainty boundaries

When fitting the parameters of the model function to data, the
uncertainty associated with each parameter has to be calculated.
Unless stated otherwise, these uncertainties are typically taken to
be the standard deviation σ of a Gaussian distribution around the
optimal parameter value. Calculating these uncertainties can be
done in several ways [4,10]:

• The uncertainties can be calculated by numerically solving
the associated equations (see 2.3.1).

• The Hessian matrix at the optimal point can estimate the
uncertainties for a locally Gaussian distributed parameter.

• A histogram of parameter values from a randomwalk can be
generated. The (log-)likelihood value is used as a sampling
criterion in this case.

The first two methods are different ways of performing the
same calculation, with the estimates merely being a computation-
ally quick approximation of the full numerical solution. Sampling
the distribution is a completely different approach. Here, we will
discuss all three options.

2.3.1. Numerical evaluation
Consider the likelihood function as only depending on the pa-

rameter aj. The values of all other parameters will be changed to
achieve the best fit for that particular value of aj. The assumption is
thenmade that the likelihood is described by a Gaussian shape [4]:

L
(
aj
)

= A exp

(
−

(
aj − a′

j

)2
2σ 2

j

)
, (11)

where a′

j is the optimal value for the parameter. Going to a χ2

formulation, this is then given as

χ2 (aj) =

(aj − a′

j

σj

)2

+ ln A. (12)

It is then easy to see that ∆χ2
= 1 corresponds to a value of aj

which is exactly one standard deviation away from the optimal
value. This can thus be taken as the criterion to find the uncertainty
for the determined parameter value.
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2.3.2. Hessian approximation
Instead of numerically finding the parameter values which

match ∆χ2
= 1, it is possible to make a parabolic estimate. From

Eq. (12), it follows that

∂2χ2

∂a2j
=

2
σ 2
j

→ σj =

√2

(
∂2χ2

∂a2j

)−1

. (13)

Theoretically, the second derivative is thus sufficient to calculate
the uncertainty bounds. One pitfall is that it is not just the second
derivative of the desired parameter that has to be calculated.
Rather, the Hessian matrix is needed:

H
(
χ2)

=

⎛⎜⎜⎜⎜⎜⎜⎝

∂2χ2

∂a21

∂2χ2

∂a1∂a2
. . .

∂2χ2

∂a2∂a1

∂2χ2

∂a22
. . .

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ . (14)

Inverting this matrix and using the diagonal elements also takes
the correlations between parameters into account.

When using the log-likelihood formula, the factor −1/2 which
is dropped in the χ2 formulas has to be reintroduced. This means
that the criterion for a 1σ error range from log-likelihood is ∆L =

1/2 and σj =

√(
∂2χ2/∂a2j

)−1.
It is possible that non-linear effects perturb the assumed Gaus-

sian shape. This can result in either a different distribution or an
asymmetric Gaussian shape with the discovered σ not being the
same for the upper and the lower bound. This can only be known
by calculating the likelihood for a series of parameter values and
plotting them. In either case, the estimate based on the inverted
Hessianmatrix is lacking, since this approach does not detect these
non-linearities.

2.3.3. Distribution sampling
Instead of assuming a Gaussian distribution for the parameters,

a Bayesian look at the problem can be adopted. In this language, we
are interested in the posterior distribution of the parameters. This
is the product of the probability distribution of the data given the
model parameters, and the prior distribution on the parameters,
divided by a normalization factor:

P (model|data) =
P (data|model) P (model)

P (data)
. (15)

In the context of this article, the (log-)likelihood function gives
the probability distribution and any previous knowledge (such
as previous measurements or boundaries) about a parameter is
encoded in the prior distribution. For a more complete treatment
of Bayesian inference, the reader is referred to Refs. [11,12].

Random steps are made in the high-dimensional parameter
space and the value of the log-likelihood is calculated. Depending
on the value of the log-likelihood, the step is accepted or rejected
according to the criterion used in the sampling algorithm [13,14].
After having sampled sufficiently, a histogram of the accepted
steps will show the probability distribution for each parameter.
From the properties of this distribution, the final uncertainties on
the parameters are estimated.

The advantage of this method is that sampling does not make
any assumptions about the details of the parameter probability
distribution. The generated data can then be analyzed as preferred:
in analogy with the common practice of reporting the 1σ uncer-
tainties, reporting the 16, 50 and 84 percentiles of the parame-
ter histograms is a common choice. The disadvantage is that the
computational efforts involved, meaning mostly calculation time
and disk space, are significant. Another drawback of this sampling

approach is that, a priori, it is not known when the walk has
converged, making the estimate of a good walk length a question
of both experience and data quality.

2.4. Systematic deviations

As a measure of goodness-of-fit, the reduced chi-square (χ2
red)

value is often quoted. This is calculated as χ2/nd, with nd the num-
ber of degrees of freedom, taken to be the number of datapoints
minus the number of parameters. For large nd, this is expected
to be 1 on average, with a variance of 2/nd [15]. This implies an
uncertainty on the calculated χ2

red which can be quite significant.
In the case of likelihood calculations, there is a statistical measure
which will asymptotically be distributed like a χ2 distribution [3]:

χ2
L = −2L (yi, f (xi)) + 2L (yi, Yi) , (16)

where Yi is the true value at xi. Since this value is unknown, this is
replaced by the measured values:

χ2
L = −2L (yi, f (xi)) + 2L (yi, yi) . (17)

From this value, χ2
red can then be calculated.

As a rule of thumb, uncertainties are often multiplied by
√

χ2
red,

with the argument that this accounts for systematic fluctuations
not included in the model. Enlarging the error bars on the data
points by this factor forces χ2

red = 1. This factor can propagate
through the (linear) fit parameters, thereby negating the need for
a refit. However, as argued in Refs. [15,16], there are some strong
implicit assumptions with this method:

1. The uncertainty distribution on the parameters is Gaussian.
2. The model is linear in all fit parameters.
3. Demanding χ2

red = 1 implies that the used model is the
correct model underlying the data.

Apart from these requirements, the expected spread on χ2
red

makes a value deviating from 1, despite themodel and uncertainty
distributionsmatching all requirements, very likely. There appears
to be no formal justification for this practice. Taking this into
account, a too large or too small value ofχ2

red should be investigated
for shortcomings of the model instead of adjusting the uncertain-
ties. In the end, it is up to the experimentalist to decide on the
goodness-of-fit and to take the comments above into account.

One specific application where this approach is justified is the
calculation of weighted averages [12]. Assuming a Gaussian un-
certainty distribution on the individual measurements, all three
requirements are met by using a constant to fit to the data.

3. SATLAS

For a detailed explanation of the SATLAS package, the user is
referred to the online documentation or the docstrings accompa-
nying all classes and methods for a technical description as well as
the required input and expected output. What will be presented
here is a short overview of the structure and possibilities of the
package.

Beyond the scientific Python stack (NumPy and Scipy), SATLAS
makes use of the LMFIT package [17] for the implementation of
parameter boundaries and expressions linking several parameters,
and the emcee package [14] for exploring the likelihood surface via
a Monte Carlo walk.

3.1. Available models

In this section, the implementation and design of the models
in SATLAS will be explored. These models are used to define the
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model function as presented in Section 2. The modular design
gives the user complete freedom concerning the definition of the
response function. This includes convenience functions that allow
extension of predefined models, as well as an easy way to define a
new model.

3.1.1. General use
The BaseModel is the abstract class used to define common be-

havior for all models. BaseModel implements the parameter view-
ing, extracting and restricting, accounting for literature values, and
model saving and additionmethods. Thismeans thatmodels can be
individually defined and the sum (using the standard ‘‘+’’ operator)
will return the expected new model.

SumModel and LinkedModel are subclasses of the BaseModel.
The input and output for these classes are such that SumModel
creates a response function which is the sum of the underly-
ing models. LinkedModel allows simultaneous fitting of different
datasets and models with optional links between the parameters
of the different models.

Since a polynomial fit is encountered very often in all branches
in science, an implementation of such a model is already pro-
vided under the name PolynomialModel. Accommodating quick
generation of models, MiscModel has to be supplied with a user-
defined function and optionally a list of parameter names. The
supplied function will then be used by the generated object as
a response function. For more involved calculations, where the
response function is either too complicated to use a single func-
tion or some optimization tricks can be used, the source code of
MiscModel provides a minimal example of how BaseModel should
be subclassed.

3.1.2. Laser spectroscopy specific
For laser spectroscopic purposes, an HFSModel was imple-

mented. This model calculates the hyperfine spectrum (HFS) of
the transition between two atomic levels, given the nuclear and
electronic spins involved and the magnetic dipole A and electric
quadrupole B parameters. For a system of levels with quantum
number F , being a coupling between a nuclear spin I and an
electronic spin J , we define the following constants:

C(I, J, F ) = F (F + 1) − I(I + 1) − J(J + 1) (18)

D(I, J, F ) =
3C(I, J, F )(C(I, J, F ) + 1) − 4I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
. (19)

The resonant transition frequencies between a lower and upper
hyperfine level νi,j are then dependent on their (frequency) energy
difference [18] and an offset labeled ‘centroid’:

νi,j = ν(I, Jupper , Fi, Aupper , Bupper )
− ν(I, Jlower , Fj, Alower , Blower ) + centroid, (20)

with the hyperfine level frequency defined as:

ν(I, J, F , A, B) =
AC(I, J, F )

2
+

BD(I, J, F )
4

. (21)

A higher order correction for the octupole contribution is also
available in SATLAS, but is typically not used.

These transition frequencies are automatically calculated by the
model objectwhen the parameters are changed and are usedwhen
the model function is evaluated. For the lineshapes of the reso-
nances, implementations of Gaussian, Lorentzian, Voigt profiles, a
Crystal Ball (Gaussian with low-energy power-law tail) shape [19]
and an asymmetric pseudo-Voigt [20] are available. The initial
intensity of the resonances is set according to the Racah intensities
(IRacah) between the F states, which follow from the coupling of
the angular momenta [21]. This intensity can either be fixed to

these calculated intensity ratios, left as free parameters or varied
between IRacah and I , where I is proportional to 2Flower + 1 [22]:

I (s) ∼ Isat ·

(
exp

(
IRacah · s

Isat

)
− 1

)
. (22)

Here, Isat is the saturation intensity of 2Flower + 1.
Additionally, a TransformHFSModel is provided in order to per-

formmodel dependent transformations of the xi input data and the
f (xi) output data. Applications here are, for example, mass depen-
dent doppler shifting from an input voltage to a laser frequency.

3.2. Cost function selection

The fitting routines have been built on top of the LMFIT pack-
age. Due to this, boundaries on the parameters and expressions
linking them (through the correspondingmethods implemented in
BaseModel) are accounted for in this package. The behavior of the
parameters can be controlled after the creation of a model through
the methods:

• set_expr to set the value of the parameter depending on
the other parameters, e.g. Ampl1 = 2 · Ampl2

• set_variation in order to set the parameter as a constant
or a variable,

• set_boundaries to restrict the possible values of the pa-
rameter,

• set_lnprior_mapping to define a prior function for the
parameter value and

• set_literature_values to define the prior for a param-
eter with a known literature value.

After setting the desired parameter options, two fitting routines
are available: chisquare_fit and likelihood_fit. Both these
functions require a model to be supplied, along with the measure-
ment data. The chosen cost function is then optimized in order to
find the best fitting model function and parameters.

When fitting with the χ2 routine, either the uncertainties on
the data points have to be given, or a function that is applied
to f (xi) in order to get σi. When using the likelihood routines,
the log-likelihood calculating function has to be supplied. If this
is not done, the Poissonian log-likelihood calculation is used. As
a convenience function, chisquare_spectroscopic_fit auto-
matically ensures that

√
f (xi) is used to calculate σi. When sup-

pliedwith the keyword xerr=value, these routines automatically
transform their respective cost functions in order to incorporate
the errors-in-variables with the correct value.

The loglikelihood module is used for all the log-likelihood
calculations. It also contains a log-likelihood function for Gaus-
sian uncertainties. Through the use of this, normal weighted least
squares can benefit from the implementation of the random walk
for uncertainty calculation.

Note that the minimization routine for chisquare_fit uses
the well-documented Levenberg–Marquardt algorithm, which is a
quickly converging algorithm that takes advantage of the sum-of-
squares form of the cost function. This algorithm cannot be used
for likelihood_fit, but a selection of other options is available.
Convergence will be either not possible or much slower with these
algorithms, so some experimentation may be required to find the
best algorithm for a given dataset.

3.3. Uncertainty calculators

The Hessianmatrix is automatically calculated after fitting such
that Eq. (13) is used to estimate the uncertainties. The advantage
of the Levenberg–Marquardt algorithm is that the Hessian matrix
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Listing 1: Usage example of SATLAS, as applied to the toy data. The comment lines (starting with #) describe the function of the following
lines. More details on the code are given in the text.
1 import satlas as sat
2 import numpy as np
3 import matplotlib.pyplot as plt
4 # Parameter and model initialization
5 I = 0.5
6 J = [0, 1]
7 ABC = [0, 500.0, 0, 0, 0, 0]
8 centroid = 300.0
9 shape = ’lorentzian’

10 fwhm = 100.0
11 background = [0.3]
12 scale = 100.0
13 model = sat.HFSModel(I, J, ABC, centroid, fwhm=fwhm, shape=shape, scale=scale, background_params=

background)
14 boundaries = {’Background0’: {’min’: 1E-16}}
15 model.set_boundaries(boundaries)
16 # Loading dataset
17 data = np.loadtxt(’toy_data.txt’)
18 x = data[:, 0]
19 y = data[:, 1]
20 # Chisquare analysis
21 sat.chisquare_spectroscopic_fit(model, x, y)
22 model.display_chisquare_fit()
23 fig2, ax2, cbar = sat.generate_correlation_map(model, x, y, method=’chisquare_spectroscopic’, filter=[’Au’

, ’Centroid’], distance=3.1)
24 # Likelihood analysis
25 sat.likelihood_fit(model, x, y, hessian=True, walking=True, walk_kws={’filename’: ’random_walk.h5’, ’

nsteps’: 12000})
26 model.display_mle_fit()
27 fig3, ax3, cbar2 = sat.generate_correlation_map(model, x, y, method=’mle’, distance=3.5)
28 fig4, ax4, cbar = sat.generate_correlation_plot(’random_walk.h5’, selection=(5, 100))
29 fig5, ax5 = sat.generate_walk_plot(’random_walk.h5’, selection=(0, 5))

is estimated during the fitting procedure, eliminating the need for
extra calculations. For likelihood_fit, the Hessian matrix is
calculated using the numdifftools package, which is designed to
calculate gradients and Jacobians of functions. Depending on the
number of parameters and data points, the external calculation
of the Hessian matrix can be quite time consuming. The matrix
is then inverted and uncertainties are assigned. In certain cases
this inversion is impossible, which is the result of at least one of
the parameters being near its specified boundary. This turns the
Hessian into a singular matrix.

The calculate_analytical_uncertainties function is
used to calculate the∆χ2

= 1 or∆L = 1/2 boundaries. Keywords
can be passed to the selected fitting routine in order to modify it
properly. This method takes the given boundaries into account by
not allowing the parameters to exceed the given values.

For the random walk, the emcee package is employed. It im-
plements an affine invariant random walking system [14], where
‘‘walkers’’ through the parametric space can slingshot each other
so the space gets explored quicker thanwith the traditional Hamil-
tonian walking system. This functionality is available as either
the function likelihood_walk or in likelihood_fitwith the
keyword walking=True. The random walk routine creates an
HDF5 file containing all the accepted positions for all the pa-
rameters. This file can be processed and plotted through gener-
ate_correlation_plot. An overview of the likelihood shape
can be made by the function generate_correlation_map. This
creates a plot similar to the output of the processed random walk:
1D curves representing the likelihood as a function of one param-
eter are drawn on a diagonal array of plots, while 2D contourmaps
are made by fixing two parameters and refitting the rest. Example
figures are given in the next section.

Table 2
Fit values and uncertainty calculations for the magnetic hyperfine splitting param-
eter A of the upper hyperfine multiplet and the centroid of the transition, using χ2

and likelihood analysis. Code used given in Listing 1 lines 22–29.

Method Au Centroid

Input values 500 300

Hessian (χ2) 501.3 ± 3.6 300.9 ± 2.5
Numerical (χ2) 501.3 ± 3.6 300.9 ± 2.5

Hessian (likelihood) 501.3 ± 3.5 301.0 ± 2.4
Numerical (likelihood) 501.3 ± 3.5 301.0 ± 2.4

Random walk (likelihood) 501.4 ± 3.5 301.1 ± 2.4

4. Uncertainty calculation testing

As a test of the different approaches for the uncertainty calcu-
lation, a toy dataset has been generated and fitted. This was done
by generating a hyperfine structure spectrum for a nuclear spin of
I = 1/2, with a lower electron state Jl that has spin 0 and an upper
state Ju with spin 1, resulting in two hyperfine peaks. The spectrum
was then sampled at 30 MHz intervals around the peak positions
that are defined by Eq. (20) using a predefinedA and centroid value.

Using these values as mean values, Poisson distributed counts
(1230 in total) have been generated. The generated data can be
seen in Fig. 2. Table 2 presents the result of the full analysis for
all approaches given in Section 2.3. Using the χ2 formalism, Eq. (3)
has been used while the likelihood has been calculated according
to Eq. (4). The code for this analysis is also given in Listing 1 and
will serve as a worked example.

The code starts out (lines 1–16) by loading the needed packages,
followed by parameter and model initialization. Loading the saved
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Fig. 2. Toy dataset generated by a hyperfine systemwith only dipole splitting in the
upper state (Au) along with best fits using different cost function calculations.

toy data is done in lines 18–20, and the rest of the code performs
the actual analysis. Theχ2 analysis and correlationmap generation
are done in lines 22 and 24, and the analysis with the likelihood
method is performed in lines 26 and 28–30.

As can be seen in Table 2, all approaches give very comparable
results. This shows the equivalence of all approaches under the
correct assumptions. If the correlation plots (see lower-left panels
in Figs. 3 and 4) show a non-ellipsoidal correlation between pa-
rameters or the 1σ -boundaries are very asymmetric, the Hessian
estimate will not be justified. In this case, the numerical approach
is only valid if left and right sides of the curves on the diagonals in
Fig. 3 can be approximated as a parabola. If this is not the case,
the assumption of the criterion is meaningless since there is no
Gaussian approximation in likelihood space. The only way that
uncertainties can then be extracted is through the random walk
and characterizing the posterior distribution. Such is the case for
the background, amplitude and FWHM parameters in this case,
with the background parameter especially presenting a strong
deviation from a Gaussian distribution.

Of interest is also Fig. 4(b), where the trajectory of the walkers
as generated by the emcee package is plotted. At the plotted scale,
it is clear that all walkers start from the same point in parameter
space and need some steps in order to start spreading out. This
phenomenon is known as burn-in and is a result of the tuning of
the sampler settings [14]. The calculated autocorrelation time of
the walk can be used to calculate howmuch burn-in is present and
has to be removed. In practice, the easier method by far is plotting
the trajectory and judging by eye.

5. Application in low-statistics data: 203Fr

To demonstrate the applicability of the different approaches,
data taken by the Collinear Resonance Ionization Spectroscopy
(CRIS) team at ISOLDE, CERN in their November 2015 campaign
on 203Fr is used [23]. The acquisition at the CRIS setup is of a
nearly event-by-event type. This allows later reconstruction of the
spectrum for an arbitrary number of scans.

203Fr has a nuclear spin I = 9/2, and the atomic transition
at 423 nm that couples an S1/2 to a P3/2 state was probed. For
more details on this type of experiment see [24,25]. This gives
rise to 6 possible hyperfine transitions between the levels. Due
to the large ground state splitting, the spectrum is split into a
left and right multiplet. Fig. 5 presents the right multiplet after
3 and 27 scans. The spectra were analyzed with all three cost
functions: normal χ2, the modified formula using

√
f (xi) and the

Poissonian log-likelihood. The value of the hyperfine parameters
was extracted, and compared to the result from the likelihood
fit for 27 scans. For the uncertainties, the χ2 methods made use

(a)

(b)

Fig. 3. Output of generate_correlation_map for (a) χ2 (Listing 1 line 24)
and (b) likelihood (Listing 1 line 28) for the toy dataset. The diagonals show the
resulting change in χ2 or likelihood after fixing one parameter and refitting. The
1σ boundaries are also indicated. The 2D contourplot is achieved in the same way
with 2 parameters fixed.

of the Hessian matrix approach while the likelihood calculation
found the ∆L = 1/2 edges. Since the calculated uncertainties are
comparable, no parameter sampling was performed. Considering
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(a)

(b)

Fig. 4. (a) The result of a walk of 12000 steps with 20 walkers. The 16, 50 and 84
percentiles are indicated on the diagonal plots and are used as value anduncertainty
estimates. The 2D histogram on the lower left shows the same correlation as seen in
Fig. 3. (b) The values of the first 600 steps taken by the 20 walkers for the Centroid
andAu parameters. A small burn-in is visible in the beginning,where all thewalkers
start from a central point and only spread out after some steps. This data represents
5% of the total data, and has been removed to generate (a).

systematic deviations as discussed in Section 2.4, the low values of
χ2
red were judged to be due to the low statistics of the dataset and

invalidity of the Gaussian model for low count rates. Therefore the
uncertainties were not enlarged. The result is given in Fig. 6.

Several striking features are immediately present. The uncer-
tainties as calculated by using Eq. (2) are roughly a factor of 2
smaller than those reported by either the modified formula Eq. (3)
or the Poissonian approach Eq. (4). Although the same value is
reached after 27 scans for all approaches for the B parameter
and the centroid, there is a 1σ deviation for the A-parameters
when using the normal χ2 procedure. The normal formula gives an
inconsistent picture, and deviates sharply from all other methods

(a)

(b)

Fig. 5. The right multiplet of 203Fr (green histogram) after (a) 3 scans and (b) 27
scans, along with the likelihood fit (blue line), offset to an arbitrary frequency. The
discontinuous shape of the fit is caused by multiplying the model function in each
frequency bin by the measurement time, as different times were spent in different
bins.

below 20 scans for the other parameters. The disagreement be-
tween themodified formula and the Poissonian likelihood is much
less andmuch smoother, with the deviation starting only below 10
scans.

6. Conclusion

Based on the statistical formalism of Maximal Likelihood, the
SATLAS package has beenwritten to provide an easy interfacewith
these formulas. The focus on user-friendliness has resulted in easy
model definitions and cost function selection. Advanced routines
to calculate the uncertainty are available with intuitive interfaces.

SATLAS allows easy and advanced analysis of experimental data
with different cost functions, requiring only a minimum of input
from the user. The results from the tests show the importance of
selecting the correct function as already suggested in 1984 [3],
which has an impact on both the value of the parameters extracted
and their uncertainty.

From the generated data, we see that the uncertainty calcula-
tions are consistentwith each otherwhen their individual assump-
tions are met.

From the CRIS data, it is shown that even at high statistics, the
traditional χ2 formula is incorrect due to the underestimation of
the statistical uncertainty on the parameter values. Furthermore,
there is a discrepancy between the analysis results obtained for
the low and high statistics datasets. This inconsistency is removed
when using the modified χ2 equation, using the model value to
estimate the uncertainty on the counted number. At lower statis-
tics, the difference between the modified equation and likelihood
is negligible until a very low number of counts is reached. Between
these two approaches, themodified equation is therefore preferred
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Fig. 6. Overview of the deviation of the fit parameters from the optimal likelihood
value as function of the total number of events in the spectrum. The transparent
band represents the calculated uncertainty. See text for details.

where feasible due to the lower computational cost. When the
spectrum only contains very few counts however, the likelihood
equation must be used in the minimization procedure.
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5.2.2 Rate equation implementation

The rate equations, as described in Chapter 2, can be used in a straightforward
fashion if the only goal is simulation. However, when using the rate equations
to analyze data and extract parameters, their implementation must allow easy
access to several of the values used in the calculations. To this end, an extension
of the SATLAS BaseModel was made which allows direct access to several
parameters.

In the implementation (source code given in Appendix A.1), the following values
in the rate equations can be adjusted during fitting routines:

• For the splittings, each level has three hyperfine parameters (A, B and C,
the latter is the octupole interaction and is fixed to zero) and a centroid to
control the location. The magnetic field in the interaction region, which
results in a small Zeeman splitting, is also included.

• The lineshape of the laser interaction cross section is chosen to be either
a Voigt shape or a Lorentzian shape. In the first case, two parameters
control the Lorentzian and Gaussian widths, in the latter case only a
single parameter is used.

• The laser intensity for each interacting laser can also be used as a
parameter. A single purity factor, describing how much of an admixture
of σ+ and σ− light is present, is used for all lasers. Considering the laser
interaction matrix Bρ (ν) as introduced in Chapter 2, the admixture is
used to replace this matrix by the weighted average of the matrices for
σ+ and σ− light:

aBρ (ν)σ+
+ (1 − a)Bρ (ν)σ−

(5.1)

• The whole spectrum is scaled by a general multiplicative factor, which
incorporates both changes in unit (e.g. processing the data to give an
asymmetry between −100% and 100% instead of between −1 and 1) and
general losses.

• Added to the spectrum is the modeling of the background, which is done
by adding a first order polynomial.

In order to reach acceptable computation times for the fitting routine, as well
as handle the correlations between several parameters such as the interaction
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time and the scaling, only a few parameters were left free. Others were either
restricted to their literature/measured value or expressions were given to define
a relationship between several parameters. The following restrictions were
implemented:

• The hyperfine parameters were fixed to the literature values to fix the
distance between the peaks.

• The interaction length of 1.6 m and the kinetic energy of the beam defines
the interaction time, which is also kept fixed.

• When spectra were analyzed where the AOM beams were present, the
ratio of the intensity to the main beam was known from measurements
with a power meter. This ratio was then used to constrain the value of
the intensity of the additional laser beams.

• The lineshape was chosen to be Lorentzian with the linewidth fixed to the
natural linewidth. Broadening of the profiles due to a high laser intensity
will be used to match the observed linewidths.

This leaves 6 parameters for the fit routine to optimize: the centroid of the
spectrum, the laser intensity and purity of the applied laser polarization, the
scaling of the entire spectrum and the two parameters for the linear background
model. As this approach produces fits that match the experimental spectra and
the information of interest is contained in the scaling parameter, this provided
the optimal combination of computational efficiency and accuracy.

5.2.3 Weighted average

After parameter estimates have been made for multiple spectra, the resulting
weighted average is calculated as

〈x〉 =
∑

i
xi

σ2
i∑

i
1

σ2
i

. (5.2)

The statistical uncertainty on this estimated mean is given by

σ2
stat = 1∑

i
1

σ2
i

. (5.3)
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This uncertainty can be subject to over- or underestimation due to an incorrect
estimate of the uncertainty on the data points. As argued in the preceding paper,
such a correction is made by enlarging the uncertainties such that χ2

red = 1.
Instead of enlarging the individual uncertainties, the statistical uncertainty can
be enlarged:

σ2 = σ2
statχ

2
red = 1∑

i
1

σ2
i

1
N − 1

∑
i

(
xi − 〈x〉
σi

)2
. (5.4)

This correction factor is only applied when χ2
red > 1, which is the most

conservative choice in the calculated uncertainty. The weighted average
implementation available in SATLAS uses the conservative choice.

5.3 Isotope shifts

5.3.1 Predicting the isotope shift of 35Ar

Prior to the b-asymmetry measurements on 35Ar, an estimate of the isotope
shift δν40,35

811 had to be made, in order to determine the location of the 35Ar
hyperfine spectrum in frequency space. This is possible by using the measured
isotope shifts of 35,36,38,40Ar in the 764 nm transition [52]. With the King plot
method, a prediction can then be made for the isotope shift δν40,35

811 in the 811 nm
line used in this study.

The King plot method plots modified isotope shifts of different transitions
against each other. The isotope shift (Eq. (2.3)) can be rewritten to give the
mean square charge radius:

δ
〈
r2

n

〉A,A′

= 1
Fi

(
δνA,A′

i −Mi
mA′ −mA

mA′mA

)
= 1
Fi

(
δνA,A′

i − Mi

µA,A′

)
(5.5)

where the subscript refers to a specific transition. Since this holds for all
transitions, the isotope shifts in another line are given by:

µA,A′
δνA,A′

j = Fj

Fi
µA,A′

δνA,A′

i +Mj − Fj

Fi
Mi, (5.6)

so there is a linear relationship between the scaled isotope shifts of two
transitions.
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By measuring the isotope shifts δν40,36
811 and δν40,38

811 and plotting against the
value measured in the 764 nm line, the linear relationship is obtained. From
this relationship, δν40,35

764 can be used to estimate δν40,35
811 .

5.3.2 Isotope shift measurements for 36,38Ar relative to 40Ar

Optical spectra of the stable isotopes were obtained by performing bunched
beam collinear laser spectroscopy. The optical detection region is a copy of
the design for COLLAPS [63]. In the laser polarization line, two (instead of
four) 9658B photomultiplier tubes (PMTs) from Electron Tubes were installed
opposite to each other in the horizontal plane of the beamline. These PMTs are
used to detect infrared photons emitted from the resonantly excited Ar atoms.
They have a quantum efficiency of approximately 2% for photons of 811 nm. As
they measure infrared signals, thermal emissions generate a high dark count
rate of 25 × 103 s−1. This is reduced by almost a factor 100 by cooling the
PMTs to −10 ◦C using a circulator filled with ethanol, resulting in a dark count
rate of approximately 300 s−1.

The 811 nm light was produced by a Matisse TS2 actively stabilized
Titanium:Sapphire (Ti:Sa) laser. Part of the light output was coupled to
a HighFinesse WSU wavemeter. The readout of this wavemeter was used to
lock the frequency of the light to a certain setpoint through a Proportional-
Integral-Derivative (PID) loop.

Figure 5.5 shows representative spectra of all three isotopes, where an additional
feature compared to the simulations in Chapter 2 is immediately visible. The
spectra contain asymmetric peaks, which is the result of collisions in the K
vapor used to neutralize the ion beam [64]. These collisions lower the kinetic
energy of the particle beam, inducing a shift towards a lower frequency. The
probability of such a collision occurring is very small, yet there are a lot of

Table 5.2: Overview of laser setpoints and amount of spectra available for
isotope shift determination for the different isotopes.

40Ar 38Ar 36Ar
PID setpoint [cm−1] 12 339.207 240 12 339.725 393 12 340.284 316
Independent spectra 6 5 7
Independent couples - 5 3



www.manaraa.com

82 EXPERIMENTAL RESULTS

0 200 400 600 800
0

1000

36Ar

Fit Measured spectrum

0 200 400 600 800
0

200

400

600 38Ar

0 200 400 600 800
Frequency offset from fine structure value [MHz]

0

1000

2000 40Ar

Co
un

ts

Figure 5.5: Representative measured optical spectra of the stable isotopes,
relative to the fine structure frequency given in literature.

particles that could undergo collisions. Therefore, the probability of undergoing
k collisions is modeled as a Poisson distribution:

P (k) = λk exp (−λ)
k! (5.7)

In the model function defined in SATLAS, this is implemented by including
N additional sidepeaks with both the constant spacing between peaks and the
intensity as parameters. The relative intensity of the kth sidepeak is calculated
as

P (k)
P (0) = λk exp (−λ)

k!
0!

λ0 exp (−λ) = λk

k! . (5.8)

Comparing fits with different numbers of sidepeaks (see Figure 5.6), the minimal
χ2

red is reached with 4 sidepeaks and no improvements were found with more.
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Figure 5.6: Fitting the spectra of 40Ar with a different number of sidepeaks
shows a saturated χ2

red value reached at 4 sidepeaks.

Isotope shift

The optical spectra were analyzed by using a χ2 minimization routine with a
hyperfine spectrum as the model function, where the centroid is one of the fit
parameters. This was done using the standard implementations for a hyperfine
spectrum and χ2 calculation as defined in the SATLAS fitting library. The
results are presented in Table 5.3.

In order to calculate the isotope shift relative to 40Ar, each centroid of 36,38Ar
needs to be coupled to a 40Ar centroid. To avoid time related drifts in the
centroids, only the 40Ar centroids closest in time to the 36,38Ar centroids are

Table 5.3: The extracted centroids for the stable isotopes, chronologically
ordered. The coupling is presented graphically in Figure 5.7.

Measurement number Centroid
36Ar [MHz] 38Ar [MHz] 40Ar [MHz]

1 193.7(9) 420.6(9) 615.7(15)
2 193.8(3) 415.1(5) 610.9(4)
3 195.5(6) 417.3(6) 610.7(3)
4 194.7(4) 415.7(4) 611.4(3)
5 194.8(7) 414.6(5) 612.4(5)
6 192.0(2) - 611.7(3)
7 194.7(4) - -
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Figure 5.7: The coupling of the individual spectra (top plot) allows correlations
between isotope shifts sharing a reference spectrum. This is compensated
by calculating the weighted average of the isotope shifts that share the same
reference value before calculating the global weighted average. The red dot
represents the weighted average of the measurements around that time sharing
the same reference value. The resulting isotope shifts (bottom plots) agree with
constant values. Note that there is one 40Ar spectrum around 7:00, 2 around
11:00 and three around 13:30.

Table 5.4: The deduced isotope shifts, ordered chronologically. The final row is
the weighted average of the numbers above.

δν40,36
811 [MHz] δν40,38

811 [MHz]

−422(2) −195.6(5)
(red dot) −417.6(9) −195.1(17)
(red dot) −416.4(5) (red dot) −195.0(7)

−416.9(9) −196.0(5)

used and reported in Table 5.3. Figure 5.7 shows the isotope shifts as a function
of time. The upper panel shows at which time a spectrum of each isotope
is taken, and the coupling is indicated with dashed lines. The middle and
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lower panels shows the calculated isotope shifts and weighted average values for
respectively 38Ar and 36Ar. The results are also given in Table 5.4.

5.3.3 35Ar isotope shift from King plot

The King plot method is then used with the data from Ref. [52] to predict
δν40,35. In Figure 5.8 the King plot is shown, with the two correlated isotope
shifts. Since a straight line fit through two data points gives a uniquely defined
solution, conventional methods cannot be used to estimate the uncertainty on
the prediction. This was circumvented by performing a Markov Chain Monte
Carlo random walk through the parameter space and using those estimated
distributions of slopes and intercepts to calculate the distribution of the scaled
isotope shift for 35Ar (see Figure 5.8). Note that the uncertainties on δν763 and
µ have been ignored.

The estimated isotope shift δν40,35
811 is then calculated to be −530(1) MHz,

corresponding to a laser wavenumber of 12 340.583 43 cm−1. This value has been
used in the subsequent b-asymmetry measurements of the hyperfine spectrum of
35Ar (see Section 5.4 for details). From these spectra, the experimental isotope
shift δν40,35

811 relative to the optical hyperfine spectra of 40Ar can be extracted.
The result is also shown in Figure 5.8, but will be discussed in Section 5.4.5.

5.4 Measurement of b-asymmetry hyperfine spec-
tra

b-asymmetry spectra are gathered by implanting a radioactive ensemble in a
crystal and measuring the subsequent radioactive b-decay as a function of the
acceleration voltage. As this acceleration voltage changes the kinetic energy of
the radioactive beam, the laser frequency as observed by the radioactive beam
is also changed through a different Doppler shift. The conversion from voltage
to frequency is done by calculating

νobs = νrest

√
1 − β

1 + β
(5.9)
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Figure 5.8: The Kingplot of both transitions predicts an isotope shift for 35Ar
with a precision on the order of 1 MHz. The measured value however differs
significantly (note the broken y-axis), most probably due to retuning of the
ISCOOL platform voltage.

β =

√
1 −

(
mc2

mc2 + qEkin

)2
(5.10)

In the plotting of the spectra, the frequency offset relative to the value of the
fine structure transition frequency is used.

The experimental asymmetry is calculated as

Aexp = N (0◦) −N (180◦)
N (0◦) +N (180◦) = εAP, (5.11)

where N denotes the number of counts detected parallel and antiparallel to
the magnetic field (and polarization) axis. This experimental asymmetry
corresponds to the product of the asymmetry parameter A and the degree
of polarization P up to an efficiency factor ε. This experimental asymmetry
as a function of laser frequency is then compared to the calculated hyperfine
polarization spectra as described in Chapter 3. All spectra shown here have
been recorded using a σ+ polarization of the laser light.
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The 0◦ and 180◦ detectors consisted of an inner and an outer scintillator, with
the aim to record coincidence counts in order to reduce the effect of dark counts.
Unfortunately, only the signal of the inner detectors could be used for analysis,
as the outer scintillator on the 0◦ side registered a number of counts that was an
order of magnitude less than the other detectors. Thus no coincidence counts
could be used for the analysis. Instead, the detector thresholds were set to cut
the low-energy background part of the b-spectrum.

Unlike the optical spectra, ISCOOL was not used to bunch the beam as the
resulting instantaneous decay rate could saturate the b-detectors. Instead, as
the release curve in Figure 5.1 shows a release of 35Ar over a period of about
0.7 s, the radioactive decay is observed for 1 s after proton impact. Thus, there
is no signal loss originating from the high instantaneous rate. Additionally, as
the halflife of 35Ar is 1.78 s, the spacing between two consecutive proton pulses
was kept to a minimum of 4.8 s. This reduced the influence from the 35Ar decay
from a previous proton pulse.

The ensemble of ions that is stopped in the crystal will experience interactions
with the crystal environment, leading to a relaxation of the spin-polarization
to the equilibrium value through spin-lattice interactions, mainly dipole and
quadrupole interactions [65, 66]. A suitable crystal host minimizes these
interactions and maintains the spin-polarization for a long time.

Six crystals have been tested for suitability: KBr, NaCl, KCl, NaF, Si and Pt.
Of these, only KBr (cooled below 20 K) has been used as a host for polarized
35Ar before [35]. NaCl and KCl have been tested based on the results of Ref. [67],
where the spin-relaxation times of 35Cl have been reported to be 5.2(5) s and
8.5(9) s respectively. Since 35Cl and 35Ar have similar nuclear properties (same
spin-parity, magnetic moments of 0.82 and 0.63 µN and quadrupole moments of
−0.082 b and −0.084 b respectively), similar relaxation times were expected. Si
has been selected due to the use of this crystal by the Osaka team for b-NMR
experiments in this mass region, while NaF has been used as a catcher for 22Ne,
also a noble gas like Ar and thus likely showing similar implantation behaviour
[68]. As the host will be cooled, Pt was used to see if the Korringa relaxation,
known to be the major relaxation mechanism in metals, was sufficiently long at
low temperatures.

SRIM simulations of a 50 keV 35Ar beam (see Table 5.5) show that the
implantation depths range from 19 nm (Pt) up to 130 nm (NaF). As these
depths are quite small, the surface quality of the crystal might have a large
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influence on the observed b-asymmetry, as well as on the relaxation time. Prior
to the measurements, no particular cleaning procedure has been applied, but all
crystals were ordered with dimensions of 10x10x0.5 mm with one side “inspection
polished”.

5.4.1 b-asymmetry spectra in different crystals

In order to determine which crystals maintain the polarization, the polarized
35Ar beam has been implanted in different crystals. Because previous studies for
KBr revealed that only below 50 K the polarization is maintained, measurements
have been made at temperatures ranging from room temperature down to
T ≈ 10 K. Typical hyperfine spectra are shown in Figure 5.9. In all crystals, an
asymmetry was observed at room temperature, except for KBr. Here, we show
the spectrum for 10 K.

A closed cycle liquid helium cryocooler was used to vary the temperature from
room temperature down to 10 K. For this, a resistive heater was used to control
the temperature of the crystal with a PID loop.

Once the crystals in which the asymmetry is maintained had been identified,
several studies were performed. We have investigated the influence of the
AOM’s on the signal strength (Section 5.4.2), measured hyperfine spectra with
different laser powers in order to study the laser polarization saturation curve
(Section 5.4.3) and for two different crystals (KBr and NaCl) we have varied the
external magnetic field strength to construct a decoupling curve (Section 5.4.4).

Furthermore, from all the measured hyperfine spectra, we can also deduce the
isotope shift of 35Ar relative to 40Ar. This is discussed in Section 5.4.5.

Table 5.5: SRIM simulations for the implantation depth of a 50 keV 35Ar beam.

NaF KCl NaCl KBr Si Pt
Average depth [nm] 130 122 109 89 60 19
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Figure 5.9: Experimental asymmetry as a function of laser frequency for all
crystals. Spectra were measured at room temperature in August, except for
KBr which was measured at 10 K in April.

5.4.2 Signal gain from multi-frequency pumping

Based on the simulations, the use of the AOMs will result in extra peaks in the
spectrum and a higher maximal polarization. From the simulations in Chapter 3
it is seen that an increase of the polarization in the largest peak from 75% to
100% can be achieved by using two AOM’s, a gain of a factor 1.33. This has
been tested experimentally, by comparing the hyperfine spectrum measured
using three correlated laser frequencies induced by the two AOM’s (the standard
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Figure 5.10: b-asymmetry spectra induced by multi-frequency pumping (bottom
panel) show additional peaks compared to the spectrum where single-frequency
pumping was used (top panel). The fit result from the rate equations (gray line)
shows a good agreement to the data for both the single- and multi-frequency
pumping. The sloping background as determined by the fit was subtracted in
order to get spectra on the same baseline.

measurement method) and then by blocking the two beams coming from the
AOM’s.

The data are taken for a NaCl crystal at 15 K. The laser power in the single
frequency scan and for the three separate laser beams in the multi-frequency
scan are restricted to the same value, as measurements with a power meter gave
the same power for all three beams at the beamline entrance.

The spectra are shown in Figure 5.10. It is clear that the ratio between the
main peaks is close to 2, which is more than the factor 1.33 expected from the
simulation. In order to quantify this gain, both datasets were simultaneously
fitted with the rate equation model as described in Section 5.2.2. The fit
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parameters that can reproduce the amplitude of the spectrum are the laser
power and two scaling factors, one for each spectrum. These scaling factors
should be the same for both spectra (which is not the case, as shown in
Figure 5.11), as the laser power is restricted to the same value in all laser beams.

The result of the simultaneous fitting is presented in Figure 5.10. The multi-
frequency pumping validates the approach of multiple Bρ matrices in the rate
equations, as the shape is well reproduced. The parameter distribution of the
simultaneous fit is probed with a random walk. The centroid and the scale
factor are fitted individually for the two spectra, as illustrated in Figure 5.11.
The scale factor for the multi-frequency scan is larger than 1, which means that
the observed gain in polarization is larger than the theoretically predicted value.

The total signal gain can be extracted from the random walk data. For each
random walk sample, the asymmetry in the highest peak is calculated for both
spectra and the ratio of these values is taken. As each step of the random
walk gives correlated values for the parameters, all correlations are propagated
correctly by calculating the ratio in this fashion. The distribution quantifies the
signal gain as 1.85(3). Compared to the expected gain of 1.33 by going from
75% to 100% polarization, the higher gain suggests that the single-frequency
pumping did not fully saturate the transition. Unfortunately, no saturation
curve measurements were made for the single frequency pumping to prove this.
Note that straightforward calculation with the Gaussian distributions would
yield a signal increase of 1.85(17), overestimating the uncertainty due to the
unpropagated correlations.

5.4.3 Saturation curve

During the experiment in August, asymmetry spectra with multi-frequency
pumping in NaF at room temperature were taken at three different laser powers.
The spectra, shown in the insets of Figure 5.12, were analyzed using the random
walk method in order to determine the asymmetry in the largest peak. The
asymmetry as a function of laser power was then fitted to the function [69]

f (I;A,S) = AI

S + I
(5.12)

with amplitude A and saturation point S, where I is the laser power delivered
into the beamline as measured by the power meter. The laser power that leads
to full saturation (≈ 20 mW for the three beam simultaneously) was used for
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Figure 5.12: The saturation curve (data points extracted from the spectra shown
underneath as insets), along with the 1σ uncertainty band, for the 811 nm line.

all other measurements. This means that the power in each individual laser
beam was of the order of 7 mW.

The parameter distribution is given in Figure 5.13. The estimated maximal
asymmetry is 0.81+0.14

−0.11 % and the saturation point is reached at 6.6+3.4
−2.6 mW.

These measurements indicate a nearly saturated transition for the case of multi-
frequency pumping. In subsequent measurements, maximal laser power was
applied.

5.4.4 Magnetic decoupling curve

For the KBr and NaCl crystals, b-asymmetry spectra with different magnetic
fields were taken at a temperature of 12 K. By varying the strength of the field,
a “decoupling” curve [70] can be constructed. From the fits to the hyperfine
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Figure 5.13: The parameters for the saturation curve form highly correlated,
non-Gaussian distributions.

spectra, the signal height is extracted as outlined before, and then plotted
as a function of applied magnetic field (Figure 5.14). The trend line in these
decoupling curves is fitted using a sigmoid function

f (x;A, s, µ, b) = A

1 + exp (−s (x− µ)) + b (5.13)

with amplitude A, steepness s, location µ and background b. In the analysis,
an artificial data point is added to force the function to pass through the origin.
Figure 5.14 shows the decoupling behaviour for both crystals.

The data seem to suggest a fully decoupled signal for NaCl already at the lowest
applied field strength of 0.2 T, while decoupling is not yet reached for KBr at
that point. The sigmoid function is an approximation of the real decoupling
curve. The decoupling curve depends on the relative strength of the magnetic
and quadrupole interactions that the implanted 35Ar experiences in the host.
Even though both crystals have a cubic crystal structure, so no quadrupole
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Figure 5.14: Decoupling curves for KBr and NaCl at 12 K.

interaction (leading to a loss of polarization) should be observed, it is known
that often small electric field gradients are experienced after ion implantation.
Such (defect-associated) quadrupole interaction is different for each host crystal,
thus a different static magnetic field strength is needed to decouple the nuclear
spin from the quadrupole interaction, resulting in different decoupling curves
for both crystals.

The data does suggest that in the case of KBr, a slight gain in the maximal
polarization could be achieved by applying a higher field. For all measurements
in this work, a field of approximately 0.6 T was applied.

5.4.5 Isotope shift measurement of 35Ar

From the b-asymmetry spectra measured in NaF and KBr (typical spectra shown
in Figure 5.9), the centroid value can be used to determine the isotope shift
δν40,35

811 by measuring the optical spectra of 40Ar. As the hyperfine parameters
were fixed to the literature values, even a single peak is sufficient to determine
the centroid. As the peak position does not depend on temperature, spectra
gathered at temperatures ranging from 12 K up to room temperature have
been used. However, the optical measurements use a lot less laser power than
the b-asymmetry measurements, as the PMTs would otherwise saturate from
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Figure 5.15: The weighted average of the centroid of all the 35Ar (top panel)
and 40Ar (bottom panel) spectra. The 40Ar centroids have been measured close
together in time and show little drift, while the 35Ar centroids have been taken
over a period of three days and show a significant drift of about 30 MHz. One
remeasured 40Ar centroid is visible after 24-04 23:00.

scattered light. Therefore, in order to not change the laser setup during the
measurements of 35Ar, the measurements of 40Ar were not done very close in
time to the 35Ar measurements. The time drifts of the centroids can therefore
not be corrected for by coupling different spectra, as was done in Section 5.3.2.
Instead, the difference of the weighted average of the centroids for the 40Ar
(611.6(5) MHz) and the 35Ar (187(2) MHz) spectra is taken, resulting in an
isotope shift of −425(2) MHz.

Another effect that was not corrected for is the change in beam energy. As
the potential of the high-voltage platform was modified during the evening of
24-04, the beam energy is different before and after the 24-01 23:00 timestamp
in Figure 5.15. In principle, this can be corrected for by recording the platform
voltage for every measurement. However, as the extraction of the isotope shift
of 35Ar in this transition was not the goal of the experiment, these voltages
were not recorded and this effect cannot be corrected for.
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From Figure 5.15, where the individual measurements for both 35Ar and 40Ar
are shown, the drift is approximated by fitting a straight line through the
centroid values of 35Ar. Although the variation of the centroid values is not
necessarily linear [71], a linear estimate is the best guess with such irregularly
spaced data points. Extrapolation to the time where the measurements of
40Ar were performed gives an estimated systematic uncertainty of 35 MHz.
Additional recordings of the voltage could have reduced the slope of the fit and
lowered the systematic uncertainty.

When comparing to the estimated value of −530(1) MHz, the difference is
almost 100 MHz. However, by applying an additional voltage of 16.5 V to the
Doppler transform of the 35Ar spectra, the isotope shift matches the prediction.

This apparent voltage shift can be explained by a combination of two factors:

1. Only one value for the ISCOOL voltage was used in the analysis. The
communication with the Agilent digital voltmeter normally used to record
this value for every scan was not working, resulting in only one value being
noted down. Typical ISCOOL drifts are on the order of 1 V in amplitude
for a voltage of 30 kV.

2. The beam tune, including the potential of the high-voltage platform, was
changed multiple times during the experiment. The setpoint did change
by 10 V between the time when 40Ar and 35Ar were measured, and the
readback value from the power supply changed by 14 V.

As the combination of these two effects gives a result of approximately 15 V,
it is a possible cause of the observed discrepancy. This illustrates the need
for regular reference measurements when using collinear laser spectroscopy to
accurately measure isotope shifts.

5.5 Measurement of b-asymmetry as a function of
time

Relaxation curves were measured by fixing the acceleration voltage, i.e. fixing the
laser frequency in the atoms’ frame of reference, such that maximal polarization
was generated. As with the b-asymmetry hyperfine spectrum measurements,
the beam was not bunched by using ISCOOL but the beamgate was opened for
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Figure 5.16: Relaxation curve in KBr at a temperature of 50 K. The data on
the right represent the baseline asymmetry, which should be a constant at the
background level of the left panel.

a short time. Unlike the b-asymmetry hyperfine spectrum measurements, the
beamgate was only opened for 0.5 s. The b-activity was recorded as a function
of time by integrating the counts in each detector in small timebins of the
order of 20 ms. For plotting purposes, this data has been rebinned to have
timebins of 200 ms. In the processing of the data, measured activity during the
implantation time is ignored and the time after closing the beamgate is used to
measure the relaxation curves during the subsequent 4.2 s.

The experimental asymmetry can vary as a function of time due to fluctuations
of the beam position, buildup of an impurity layer on the crystal surface, etc.
Therefore, in order to determine the laser-induced asymmetry, it is necessary
to regularly perform a reference measurement of the experimental non-laser
induced asymmetry, in order to measure the background asymmetry level. This
is done by performing a measurement of the asymmetry as a function of time,
using an unpolarized beam (lasers blocked). Two different methods have been
used for this.

For the measurements in April, background asymmetry measurements were made
separately after a full measurement of the relaxation curve. Analysis of these
data (Figure 5.16) shows that the baseline asymmetry measurements cannot
be used to determine the background asymmetry since all of the unpolarized
measurements show a slope, artificially boosting the signal measured in the
unpolarized spectrum. Therefore, the relaxation time curves from the April
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Figure 5.17: Representative relaxation curve in NaCl at a temperature of 60 K.
The curve on the right was taken with the laser light blocked and establishes
the baseline, while the curve on the left does not have the laser light blocked.

experiment unfortunately did not reveal any consistent results and will not be
discussed.

For the data gathered in August, a remote-controlled laser shutter was activated
after each second proton pulse to block the laser light. Thus, every second
proton pulse, the asymmetry is that of a non-polarized ensemble. This sequence
of polarized-unpolarized-polarized implantations allows quasi-simultaneous
measurement of the background (non-polarized) b-asymmetry signal. An
example of the resulting curves is given in Figure 5.17.

5.5.1 Relaxation time curves as a function of temperature

For NaCl and KCl, the data was saved for each proton pulse as the crystal
was being cooled (see Figure 5.18 for the recorded temperature as a function of
time) instead of measuring for multiple proton pulses while the crystal is kept
at one specific temperature. In order to compensate for the limited statistics
generated by a single proton pulse, the results of several proton pulses were
summed together to form a single measurement curve. For both crystals, the
summation resulted in an averaging over a temperature range of approximately
20 K.
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Figure 5.18: The measured temperature from a temperature sensor located
near the crystal. The cooling rate was approximately 300 K h−1 except for the
first cooling curve of NaCl where some thermal contact was made with the
environment, resulting in a cooling rate of 139 K h−1.

These experimental curves were then fitted to the equation

A (t) = amp · exp
(

− t

T1
ln (2)

)
+ back (5.14)

where amp is the implanted asymmetry at t = 0, T1 is the spin-relaxation time
and back is the background parameter. The parameter distribution of amp is
then used as the extracted asymmetry.

Figure 5.19 shows both the asymmetry extracted from the relaxation curves in
NaCl (top panel) and the temperature (bottom panel) as a function of time.
The signal height increases as the temperature is lowered. It is also clear that,
after an hour at 10 K, the asymmetry in NaCl starts to decrease at a rate of
about 0.3% per hour. This can be attributed to a buildup of impurity layers on
top of the crystal surface. Since this buildup is comprised of the remaining gas
in the beamline, this layer will not form the appropriate crystal structure to
maintain the ensemble polarization and asymmetry will therefore be lost when
implanting.
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Figure 5.19: The extracted asymmetry from the NaCl relaxation curves as a
function of time, along with the temperature of the crystal. After 3:00, when
the lowest temperature has been reached for an hour, the asymmetry signal
starts degrading. The heating and cooling cycle between 6:00 and 8:00 restores
the observed asymmetry signal.

However, the asymmetry can be restored to the previous value by heating the
crystal up and cooling it down again. This temperature cycle evaporates the
condensed layer on top of the crystal, restoring the surface to the implantation
conditions necessary for measuring again. As approximately one hour of
measurements can be performed before the signal starts degrading and the
heating/cooling cycle takes two hours, a duty cycle of about 30% is present
when measuring at cold temperatures.

5.6 Diffusion of 35Ar

Instead of calculating the asymmetry in the two detectors, the counts in both
detectors at t = 0 can be summed together. This b-intensity gives a measure of
the implanted activity. This b-intensity, when plotted as a function of crystal
temperature, shows a decrease for higher temperatures. The evolution of the
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data is generally described by a modified Arrhenius relation:

f (T ;A,Q, b) = −A exp
(

− Q

8.617 330 3 × 10−5 eV mol−1 K−1 · T

)
+ b (5.15)

where A is the amplitude of the curve, b is the saturated value and Q is the
activation energy in kJ mol−1. Here, the Arrhenius relation is used to account
for the amount of missing b-intensity as a function of temperature, hence the
modified equation. As Arrhenius curves of this form are commonly used to
model diffusion [72], agreement would suggest that the Ar nuclei are diffusing
out of the crystals, which has also been raised as a possible explanation for the
low polarization observed in Ref. [35].

For both NaCl and KCl, Eq. (5.15) was used to fit to the observed data, and the
results are shown in Figures 5.20 and 5.21 respectively. An activation energy of
approximately 55 meV is found for both crystals.

Since radiogenic Ar content is used as a dating method in geology, diffusion
of Ar in several rock types has been studied and have been found to have a
low activation energy (about 1.3 eV for sodalite (Na8(Al6Si6O24)Cl2)), causing
significant diffusion losses even at ambient temperatures [73, 74]. Self diffusion
in solid argon has an even lower activation energy, which was measured to be
179 meV with theory predicting 165 meV [75], which is due to the even smaller
interaction strength of the Ar with the crystal lattice.

The factor of 3 difference between the self diffusion and the obtained results could
be explained by taking into account that the Ar-NaCl/KCl diffusion mechanism
is different from the Ar-Ar mechanism. For example, Ar experiencing a chemical
potential in NaCl/KCl could enhance the diffusion process.

Regardless of the actual mechanism for the loss, room temperature measurements
contain only about 80% of the b-counts compared to measurements at low
temperatures.
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Figure 5.20: The observed activity in the NaCl crystal, plotted as a function of
temperature, agrees well with the Arrhenius curve (solid line with 1σ uncertainty
band).
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Figure 5.21: The activity in KCl, as in Figure 5.20, behaves according to an
Arrhenius curve.
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Chapter 6

Interpretation of the data

The deepest solace lies in understanding.
—Nightwish, Shudder Before The Beautiful

In this chapter, we discuss the b-asymmetry that has been extracted from
the different measurements. The conditions that lead to the highest possible
asymmetry are summarized. Furthermore, simulations are presented to estimate
which processes could lead to a potential loss of polarization and thus a reduction
of the observed b-asymmetry.

6.1 Extraction of b-asymmetry

Although the exact temperature dependence of the spin-relaxation time T1
depends strongly on the physical processes in the crystal, they share the same
global behaviour. Refs. [76, 77] report the spin-relaxation time T1 is inversely
proportional to the temperature. In alkali halides and insulators like NaF, NaCl,
KBr and KCl crystals, the relationship is calculated to be of the form [67, 78]

T1 ∼ 1/T 2
L, (6.1)

where TL is the lattice temperature. In some cases, intermediate powers between
−1 and −2 have also been found. Note that these references did not consider

105
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Figure 6.1: Relaxation curve in NaCl at 30 K, showing a near-constant offset
between the polarized (left) and non-polarized (right) measurement.

the case of an implanted beam, where the intruder species is not part of the
crystal compound and does not necessarily end up in a substitutional location.

As mentioned in Section 5.5.1, the parameter distributions of the fits to
the relaxation curves of NaCl and KCl (at a magnetic field of 0.6 T) were
explored via the Monte Carlo method. Although for some experimental curves
(example shown in Figure 5.17) the relaxation time can be accurately determined,
the majority of relaxation curves at low temperatures show a near-constant
signal (Figure 6.1). From these curves, the spin-relaxation time cannot be
extracted with any quantifiable certainty (Figure 6.2), and only the laser-induced
asymmetry can be extracted. This unfortunately means that the temperature
dependence of the spin-relaxation time can not be tested to see if it is of the form
of Eq. (6.1). However, by observing a near-constant signal in the time range
of multiple half-lives of 35Ar (1.78 s) at low temperatures, the spin-relaxation
time is guaranteed to be longer than the half-life. Figure 6.3 illustrates that
the asymmetries deduced from the hyperfine spectra are consistent with the
asymmetries extracted from the relaxation curves.

While the April beamtime shows very promising asymmetries extracted
from hyperfine spectra in NaF even at room temperature, the subsequent
measurements in August did not confirm these results. This change in observed
asymmetry is not fully understood; one possibility is degradation of the crystal
surface over the five months between the beamtimes as the same NaF crystal
was used and it was not stored in a protective atmosphere. Due to the unreliable
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Figure 6.2: Posterior parameter distribution of the fit in Figure 6.1. The
relaxation time T1 is not well defined, while the background and amplitude are.

baseline estimation performed for the relaxation curves in April, these results
are not included.

As the first measurements of August did not show any promising asymmetry
in NaF, only the properties of KCl and NaCl were investigated down to very
low temperatures. These crystals yield asymmetries of 1.16(7) and 1.21(14)%
respectively when taking the average asymmetry for the data collected at
temperatures < 15K. The observed asymmetry in all crystals is given in
Table 6.1, where the small signal in KBr and Pt is very clear.
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Summary

From the set of crystals, Pt and KBr can be eliminated as a good candidate
hosts for the next phase of the research project. NaF, while providing a
good asymmetry signal in April, did not do so in August, most likely due to
degradation of the crystal surface. The two main candidates are NaCl and KCl,
which both give an average of about 1.15% asymmetry.

The spin-relaxation time of these results could not be determined, but at low
temperatures is greater than the half-life of 35Ar.

6.2 Simulation of the possible losses of nuclear spin
polarization

6.2.1 Losses due to spin rotation

When extracting the nuclear polarization from the rate equations, the
approximation is made that the population of all n eigenstates stays in the
nth eigenstate throughout the entire flight through the various magnetic fields.
This is the definition of the adiabatic theorem [79], and using it gives the direct
mapping between the set of quantum numbers when the external magnetic field
is weak (F,mF ) and when the field is strong (mI ,mJ ), introduced in Chapter 2.
However, the adiabatic theorem relies on two assumptions [80]:

1. There are no degenerate levels in the spectrum of the Hamiltonian at each
point in time.

Table 6.1: Weighted average of the observed asymmetry in hyperfine scans and
relaxation curves at temperatures < 15 K and > 273 K for the different crystals.
The result for NaF is deduced from the hyperfine spectra of April only.

NaCl KCl KBr NaF Pt
Asymmetry <15 K [%] 1.21(14) 1.16(7) 0.27(05) - 0.41(5)
Asymmetry >273 K 0.33(4) 0.30(6) - 1.09(17) -
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2. The timescale of the changes in the Hamiltonian must obey

〈ψm, t|Ḣ|ψn, t〉
En − Em

≡ 1
τ

� Em

~
(6.2)

where ψi is the ith eigenstate. This puts a restriction on the time derivative
of each element on the mth row of the Hamiltonian matrix.

Previous b-asymmetry campaigns have always used a ground state J = 1/2,
where the levels are not degenerate except for an exactly zero magnetic field.
In 35Ar, this assumption is already violated due to the crossing of the levels in
a weak magnetic field (≈ 25 mT, see the Breit-Rabi diagram in Chapter 2).

The appropriate timescale for the second assumption depends on both the speed
of the particle as it traverses through the magnetic fields (since spatial variations
are transformed into temporal variations), and the hyperfine interaction strength.
Slow changes in the magnetic field will lower the time derivative on the left side
of the equation, while a strong hyperfine interaction will increase the energy
term on the right side. The speed also determines the time needed to reach
the crystal location, starting from the beginning of the transitional field region.
Note that the simulation is extended by 50% beyond the time needed to reach
the crystal location, where the magnetic field is kept fixed to determine the
static evolution. This is also the time period over which the time-averaged spin
projection is calculated.

Therefore, the dynamics of the nuclear spin, i.e. the precession of it in the
magnetic field, can lead to polarization losses if the spin rotation is not adiabatic.
Explicit calculation of the rotation process quantifies the possible losses. The
QuTiP library [81] was used for the calculation, enabling the automatic creation
and calculation of quantum objects such as spin operators, Hamiltonians and
kets. Thus the focus is shifted from the implementation of the equations to the
formulation. The main part of the simulation code is given in Appendix A.2.

The magnetic field has been measured in three different situations: with only
the large electromagnet on, with only the transitional field on, and with both
the electromagnet and the transitional field coils on. The main electromagnet
was set to a value of 0.35 T as measured at the center during the measurements
of the magnetic field. As all experiments on 35Ar have run with the magnet
producing a field of 0.6 T, the main magnet field has to be multiplied with a
factor of 1.71(= 0.6/0.35) to get the correct magnetic field profile.
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Hamiltonian

In the interaction between the two spins and the environment, three terms arise:

1. the hyperfine interaction between the two spins.

2. the interaction between the electronic spin and the external magnetic field
(B).

3. the interaction between the nuclear spin and the external magnetic field.

The Hamiltonian is given by the following three terms:

H = Hhyp + HB,J + HB,I (6.3)

= AI · J + gLµBB · J − gµN B · I, (6.4)

where the electric quadrupole hyperfine interaction is neglected due to the
small contribution compared to the magnetic dipole interaction. The hyperfine
interaction strength is given by the magnetic hyperfine parameter A. The
magnetic interaction with the electron spin is moderated by the Landé g-factor
gL and Bohr magneton µB . For the magnetic interaction with the nuclear spin,
these factors are replaced by the nuclear g-factor g and nuclear magneton µN .
The numerical values for the constants used in the calculations are [82]:

gL = J(J + 1) − S(S + 1) + L(L+ 1)
2J(J + 1) + 2(J(J + 1) + S(S + 1) − L(L+ 1))

2J(J + 1) ,

(6.5)

µB = 13.996 245 042 × 109 Hz T−1, (6.6)

µN = 7.622 593 285 × 106 Hz T−1. (6.7)

From these values, the magnetic interaction with the nucleus is seen to be a factor
1000 weaker than the magnetic interaction with the electron. Although this term
could be safely neglected, it is included in the calculations for completeness.

Spaces, states and operators

The system of interest consists of both the nuclear spin I and the electron spin
J . Every ket |ψ〉 describing the combined system is therefore part of the tensor
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product of both Hilbert spaces:

|ψ〉 ∈ CdimI ⊗ CdimJ = CdimI×dimJ , (6.8)

where the dimensions refer to the dimension of the spin subspaces generated by
the given spins.

The spin operators themselves are trivially extended towards the combined
space by taking the tensor product with the identity operator acting on the
other subspace:

∀i ∈ {x, y, z} : σi,I = σi ⊗ 1, σi,J = 1⊗ σi, (6.9)

I =
∑

i∈x,y,z

σi,I , J =
∑

i∈x,y,z

σi,J , I · J =
∑

i∈x,y,z

σi,I · σi,J . (6.10)

With the definition of these operators, the Hamiltonian of Eq. (6.4) can be
formulated and used in the code.

In order to generate the initial ket, the populations of the F,mF sub-states are
extracted from the optical pumping results on the transition giving maximal
polarization. These states correspond to the eigenstates of the hyperfine
interaction in Eq. (6.4). Since the population in a ket α |ψ〉 is given by |α|2,
each eigenstate is weighed by the root of the calculated population. The sum of
these weighted eigenstates is then used as the initial ket. For multi-frequency
pumped 35Ar, the initial ket is given by

|ψ0〉 = 0.74 |3/2, 2〉 − 0.23 |3/2,−2〉 + 0.25 |−1/2, 1〉 − 0.30 |−3/2, 2〉 , (6.11)

where eigenstates with |α|2 < 0.05 have been omitted. Note that, in general,
the ket is not a direct product of an electron and a nuclear spin ket:

@ |φ〉 ∈ CdimI ,@ |η〉 ∈ CdimJ : |ψ0〉 = |φ〉 ⊗ |η〉 . (6.12)

This shows directly that we cannot consider the nuclear and electron spin
separately, but must always consider the system as a whole.

At each timestep t of the simulation, the nuclear polarization along the z axis
can be determined for the ket |ψt〉 by calculating

Iz = 〈ψt|σz,I |ψt〉
I

, (6.13)
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and similar definitions for the other axes. In contrast to the method of
determining the nuclear spin-polarization given in Chapter 2, this method
takes the applied magnetic field and subsequent decoupling of the spins into
account. As the |F,mF 〉 eigenstates of the Hamiltonian at a magnetic field of
0 T are superpositions of the decoupled |mI ,mJ〉 basiskets and the eigenstates of
the Hamiltonian approach the decoupled basis for large magnetic field strengths,
the nuclear polarization can increase with magnetic field strength by reducing
the mixing of the different |mI ,mJ〉 states.

From the rate equations, only the population in each state can be calculated
and the relative phase is unknown. This phase results in a different orientation
angle of the spins about the magnetic field vector. Simulations with different
orientation angles are used to average out the missing phase information. In
order to rotate about the magnetic field vector, the operator

D (θ) = exp
(

− iθn · S

~

)
. (6.14)

is used to rotate over an angle of θ rad about the axis defined by the unit vector
n. In order to rotate both spins at the same time, I + J is substituted for S.
The final form of the operator is

D (θ) = exp
(

− iθn · (I + J)
~

)
, (6.15)

where n is the unit vector along the initial magnetic field. For every angle
considered in the interval [0, 2π) rad1, the ket is left multiplied by the matrix
representation of this operator. In the simulations, 10 different equidistant
angles were used for this rotation. Figure 6.4 shows the dependency of the
final calculated nuclear polarization, fitted with a sine function. Aside from the
expected 2π period, it is clear that the behaviour is sampled well enough to
extract a reliable average. The value extracted by Eq. (6.13) at each point in
time is averaged over all 10 spin trajectories.

1Although the kets are spinors and thus would require a rotation of 4π rad to restore the
original wavefunction, a rotation of 2π rad gives the same wavefunction up to a minus sign in
the components. As our interest lies in the expectation value and not an off-diagonal element,
this minus sign does not contribute and we only require a rotation of 2π rad.
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Figure 6.4: The achieved nuclear polarization using different starting orientations
about the magnetic axis. The frequency shows the expected 2π rad rotation
symmetry. The population in a multi-frequency pumped ensemble shows little
impact, due to the high degree of polarization
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Figure 6.5: The trajectory of 35Ar in spin space, averaged over the 10
different starting angles, results in an eventual spin-projection on the y-axis of
approximately 100% for the multi-frequency pumped starting population (top),
and 61% for the single-frequency pumped ensemble (bottom).
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Figure 6.6: Population for the initial ket in the |F,mF 〉 basis (left), and for
the final ket in the |mI ,mJ〉 basis (right) for the multi- and single-frequency
pumped Ar. An adiabatic transfer would translate the population directly from
the kets on the left plot to the corresponding ket on the right.

Results

The simulations for polarized 35Ar, performed using the experimental conditions
(50 keV beam energy, 0.6 T field strength) and using the results of the rate
equations for both multi- and single-frequency pumping as initial kets, result in
the spin-trajectory shown in Figure 6.5. The nuclear spin polarization is shown
as a function of time for the x, y and z axis. The components have been labeled
such that the positive x direction is along the beam path, the positive y axis in
the direction of the main magnetic field, and the z axis points upward. This
is the same axis system as used in the article in Chapter 4. We are therefore
interested in converting a polarization along the x axis into a polarization along
the y axis.

The calculations show a very effective rotation: applying Eq. (2.35) to the results
of the rate equations, the final polarizations are estimated to be 99.9% for the
multi-frequency pumped case and 68.8% for the single-frequency pumped case.
With the spin-rotation calculations resulting in 98.3% and 60.8% respectively,
there is practically no difference between the two calculations for the multi-
frequency pumped situation. The single-frequency pumped case does deviate,
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Figure 6.7: Nuclear spin projection as a function of main magnetic field strength.
In both cases, the achieved spin polarization starts to saturate after the second
data point, corresponding to a magnetic field of 35 mT. Full spin-rotation is
achieved from about 0.2 T onward.

also showing a much more erratic trajectory in spin space. Comparing the
populations in the starting kets (left panel of Figure 6.6), multi-frequency
pumping results in a much more pure eigenket than the single-frequency pumping
situation, which is most likely the cause of the wider distribution found in the
final ket of the simulation (right panel of Figure 6.6) for the single-frequency
pumping.

Variation of the strength of the main magnetic field (Figure 6.7) shows that the
adiabatic rotation in the region probed in the decoupling curves (above 0.2 T)
does not change in efficiency. No additional corrections are therefore needed,
and the observed results depend purely on the crystal properties.

From these calculations, it is observed that the adiabatic approximation is fully
satisfied for the case of multi-frequency pumped and there is no additional loss
of polarization from this step. Single-frequency pumping prepares the ensemble
in a more mixed initial ket, leading to less nuclear polarization along the y-axis
than predicted by the adiabatic approximation.

One of the planned projects at the beamline is the installation of a fluorescence
polarization-checker [83], where a second laser probes the population of the
different substates directly. This additional measurement type can provide
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experimental verification of the quantum-mechanical spin-rotation calculations,
and will also allow to perform off-line developments to identify suitable laser
schemes for spin-polarizing other elements.

6.2.2 Losses due to beta-scattering

In order to determine any systematic effects due to the scattering of the b-
particles in the setup, COMSOL simulations were carried out. The full setup
including the copper heat shielding was imported from the Autodesk Inventor
drawings.

In the simulation, the electronic stopping power of copper taken from Ref. [84]
was applied to the Ionization loss simulation node to model the slowdown of
the positrons in the copper shielding. The copper also interacted with the b-
particles through a Nuclear stopping node that implements Coulomb scattering,
which will dominate for low-energy positrons. A constant magnetic field of
0.6 T (direction given in Figure 6.8) was set, resulting in a Lorentz force on the
positrons.

Annihilation of the positrons and the resulting gamma rays was not simulated,
due to the much smaller cross section compared to the ionization loss cross
section.

4 × 104 positrons were released from the surface of a 1 × 1 cm crystal surface
with a uniform spread. The polar angle of the initial momentum was drawn from
the angular distribution expected for a (25.18% of the population after charge
exchange being 98% polarized=) 24.7% polarized ensemble with an asymmetry
parameter of 0.43:

W (θ) = 1 + 0.106 cos (θ)
2π , (6.16)

where the factor of v/c was neglected. Compensating for the differential element
of the surface of a sphere, the azimuth angle is given by

φ = arccos (u) , (6.17)

where u is a uniformly chosen random number in the interval [0, 1). The initial
energy of the positrons is drawn from the b-spectrum shape for 35Ar. For the
shape of this spectrum, calculations were performed by L. Hayen [85]. The
calculations were repeated for an ensemble with 0% asymmetry to establish the
baseline.
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Although a thin aluminium window (approximately 100 µm thick) is also present
between the b-detector and the vacuum chamber, this was not simulated due to
the proximity to the detectors. While this window would influence the measured
b-spectrum, it would not change the asymmetry. As no spectrum is recorded in
the experiment, only raw counts, this approximation saves calculation time by
eliminating the need to propagate the particles through a thin layer.

The b-particles that arrive at the b-detectors were frozen in place and their track
recorded. The top plot of Figure 6.8 shows a 3D representation of simulation in
COMSOL, with the tracks colored according to the kinetic energy.

Unfortunately, an issue with generating random numbers in COMSOL appeared
during the simulations. In order to generate random numbers from a user-
defined distribution, a table of values is given and interpolated. This method has
been used to generate the 10.6% and 0% asymmetry simulations. An asymmetry
of respectively 4.37(93)% and −2.61(93)% is observed, where the uncertainty
is an approximate statistical uncertainty by using σ =

√
N . As the setup is

symmetric (mirrored over the yz-plane), the simulation with 0% asymmetry
should result in 0% detected asymmetry. Repeating the simulation with 0%
asymmetry using the built-in uniform distribution generator gives an asymmetry
of 0.3(8)%, where the expected 0% is well within the statistical uncertainty.
This points towards a problem in the generation of random numbers from
user-defined functions.

By using the 0% simulations as a baseline, the effect of the faulty random
numbers should be minimized. Subtracting both simulations from each other
results in a signal height of 7.0(13), which is 4.4σ away from the 1.21(14)%
average asymmetry observed in NaCl. Introducing a systematic uncertainty of
2%, which is not unreasonable given the unknown fault in the random number
generator, the simulation result is evaluated as 7.0(33)% by linearly adding the
systematic uncertainty to the statistical one. This reduces the deviation already
to 1.75σ, but also illustrates the need for high precision simulations of the setup
in order to get scattering and solid angle corrections to sub percent precision.

Although precise results cannot be extracted from the COMSOL simulations,
several interesting features can still be identified and taken into account for
future phases in the project. The middle panel of Figure 6.8 shows the location
distributions for the detected b+-particles. As can be seen, the crystal is offset
by 5.5 mm in the z direction to capture less of the positrons scattered on
the copper crystal mount. The location distribution clearly shows that the
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Figure 6.8: Top plot: setup as implemented in COMSOL (orange = copper). The
magnetic field is oriented along the x-axis. Middle plots: location distribution
of the detected particles in both detectors, along with the total transmission to
each detector. Bottom plot: measured asymmetry as a function of detector size.
The detectors used in the setup covered the entire hole (25 mm radius).
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Table 6.2: The first section details experimental asymmetry modifiers and their
effect. The optical pumping is assumed to be on the transition frequency giving
maximal polarization. The second section details the input asymmetry for the
b-scattering simulations and the result thereof.

Mechanism Asymmetry impact
Optical pumping with σ+ 100%
b-asymmetry parameter 43%
CEC population distribution 25%
Adiabatic rotation 98%

Asymmetry for simulations 10.6%
Solid angle and scattering simulation 7.0(13)%

distribution peaks sharply in the middle of the opening and quickly drops off.
Any deviation in detector location will therefore have a large impact on the
measured asymmetry. The bottom plot of Figure 6.8, where the asymmetry of
particles within a certain radius around the origin is calculated, shows the large
impact that the detector size has on the measured asymmetry. The statistics
improve with detector size, as more b-particles are detected and the statistical
uncertainty is reduced. However, by integrating over a larger solid angle, the
measured asymmetry is reduced as compared to the optimal detector size of
10 mm radius.

6.3 Possible improvements

Table 6.2 lists the different factors that influence the observed b-asymmetry,
where the main loss channel is clearly the population distribution across the
different fine structure levels after charge exchange. For future phases of the
project, methods that would select only the metastable population of the beam
would significantly improve the measurements. One of the possibilities for
such a method is extending the beamline to make a 90◦ turn2. This would
require selective re-ionization of the polarized ensemble, leaving the unpolarized
population in its atomic configuration. This could be carried out in two different
ways:

2Although it does not need to be 90◦, this would be required to fit the beamline in the
ISOLDE hall.
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1. State-selective collisional re-ionization with Cl gas.

2. Selective re-ionization from the polarized metastable level using pulsed
lasers.

The collisional re-ionization has been measured to have an approximately 3
times higher cross section with the metastable state than with the ground state
[52]. This would give a population of the metastable state given by

w (meta) · σrel (meta)∑
level w (level) · σrel (level) , (6.18)

where w is the population in the indicated level. Assuming a two-level system
(ground and metastable states), a population of the metastable state of 25%
would result in a re-ionized beam consisting of 50% Ar in the metastable state
and 50% in the ground state, an enhancement factor of 2.

By using the calculated charge exchange populations (performed by A. Vernon,
see Chapter 3), the relative ionization cross section for the other metastable
levels can be estimated. The population of the metastable levels after a flight
of 1.6 m can then be used to estimate the impact of including these additional
levels in the calculation. This procedure estimates a re-ionized beam consisting
of 55% Ar in the metastable level we are interested in, 23% in the ground state
and the rest distributed over the other levels. Note that these estimates use
the calculations where an Ar beam hits a gas target of K, not Cl. Nevertheless,
these additional estimates show that collisional re-ionization should give a beam
which is consisting of 50% Ar in the correct metastable state.

The re-ionization efficiency has been reported to be 9% [52], and collisional
re-ionization of polarized Li on a He gas target has been shown to be possible
[86]. However, the re-ionization efficiency of a Li beam on a He gas target
has been shown to depend on the density of the gas target [87], where the
ionization cross section for the metastable state is higher at a smaller density of
gas and the total cross section grows with gas density. A careful tuning of the
re-ionization cell gas density would therefore be required.

Using pulsed lasers to selectively re-ionize the meta-stable polarized ensemble
should result in an almost pure beam of 35Ar in the meta-stable state. In this
case, the signal would increase by a factor 4. The laser ionization efficiency
itself is typically on the order of 1-10%, comparable to collisional re-ionization.
An appropriate laser scheme should maintain the polarization of the ensemble.
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Figure 6.9: Estimated measurement time with updated yield information as a
function of nuclear polarization.

For both the collisional and laser re-ionization approach, an efficiency of the
order of 10% can be assumed. Assuming a charge exchange efficiency of the
same order of 10%, approximately 1% of the measured yield could be delivered
to the setup after state-selective re-ionization. Using Eq. (1.10) with 1% of
the yield measured in the April campaign, the estimated measurement time
as a function of achieved nuclear polarization can be calculated (Figure. 6.9).
As the estimated time is approximately 30 days for a polarization of 40%,
collisional re-ionization does not offer enough of an increase in signal to achieve
a reasonable measurement time. Laser re-ionization should give a nuclear
polarization high enough for a beamtime of less than 10 days, which is a more
reasonable timeframe. Note that this estimation does not take into account any
duty cycle losses due to the reheating and cooling down of the crystal when the
asymmetry signal decreases.

Another factor to be considered is the covered solid angle and scattering in the
setup. Based on the results of the COMSOL simulations, the placement of the
detectors and their size will need to be simulated quite accurately in order to
avoid large systematic uncertainties. As a cold shield will be needed to reach
the low temperatures, the scattering on the shield itself will also need to be
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calculated. Geant4 is more suited for this exact task than COMSOL, although
the definition of the geometry in the Geant4 framework will be more difficult.

As a decrease in signal has been observed when the setup is kept at the coldest
temperature, a better vacuum is required to extend the measurement time. The
current vacuum reached a pressure of 3 × 10−6 mbar, which can be improved
by using CF connections with copper gaskets instead of an aluminium chamber
and Viton O-rings. However, care must be taken that the vacuum chamber is
made out of a magnetic field compatible material. Note furthermore that laser
ionization is more easily compatible with high vacuum than a re-ionization gas
cell.

6.4 Summary

The relaxation times and observed b-asymmetries in the different crystals
show that either KCl or NaCl at 10 K maximize the b-asymmetry signal. The
degradation of the crystal surface quality is most likely the cause of the drop
in asymmetry observed between April and August for the NaF host, as the
crystal was stored in air between the beamtimes. If the surface quality is
better maintained, the best crystal host might still be NaF at low temperatures.
Such measurements have unfortunately not been performed in the available
beamtimes. While no numerical value can be given for the spin-relaxation time
in the different crystals, it is long enough at low temperatures to generate a
near-constant signal over a 4.2 s time period.

The spin-rotation simulations in the magnetic fields have been carried out in
their entirety to probe the validity of the decoupling and rotation assumed in
the rate equations. For the specific case of 35Ar, the multi-frequency pumped
ensemble does indeed rotate adiabatically. Taking this adiabatic rotation into
account, simulations have been performed to estimate the asymmetry that can
be expected. Simulations predict an observed asymmetry of 7.0(13)%. As the
highest average asymmetry has been observed in NaCl and was 1.21(14)%,
the deviation from the simulations is 4.4σ. While this is a large deviation
from the expected value, the b-scattering simulations performed in COMSOL
need to be reevaluated in order to asses the accuracy, possibly in Geant4. An
additional uncertainty of 2% on the simulations would seem reasonable, and
would already reduce the statistical deviation to 1.75σ when added linearly to
the statistical uncertainty. This shows the need for accurate simulation work as
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well as accurate building of the setup, which must be taken into account in the
design phase.

Among the possible improvements for a future setup, laser re-ionization offers
the largest increase in polarization of the ensemble and decrease in final
measurement time. The need for a better vacuum to increase the time available
for measurements will also be crucial.
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Conclusions and outlook

It’s not over.
—Blind Guardian, Sacred Worlds

In the course of this thesis, a new laser-polarization beamline has been designed
and constructed at ISOLDE, CERN. Technical developments focused on the
design of the magnetic fields and simulations of the expected transport efficiency
[56].

As part of the ongoing research project on spin-polarized 35Ar for the purpose
of weak interaction studies [21], the first phase of this research project was
carried out at the new beamline. In this phase, the feasibility of producing
a spin-polarized beam of 35Ar has been studied, as well as the crystal host
that maintains the polarization the longest. In preparation, the rate equation
formalism already in use for laser-polarization setups [43] was extended to
incorporate interaction with multiple lasers and schemes with electron spins
larger than 1/2 in the lower state. Based on the results of these rate equation
calculations, a laser scheme using 2 AOM-generated sidefrequencies was
suggested in order to maximize the polarization of the ensemble.

The results of two beamtimes, carried out in April and August 2017, show that
the extension of the rate equations reproduces the spectrum measured online.
The measured signal gain (1.85) was higher than expected from the simulations
(1.33), most likely due to not saturating the transition with a single laser beam.
The relaxation time measurements, carried out at different temperatures, show

125



www.manaraa.com

126 CONCLUSIONS AND OUTLOOK

that both NaCl and KCl at low temperatures give the highest asymmetry signal,
of approximately 1.2%. The different signals observed in NaF, combined with
the estimated implantation depth, indicate that the surface quality should be
carefully maintained. In addition, NaF with a good surface quality might be
better than either NaCl or KCl. Simulations of the charge exchange process,
optical pumping, adiabatic rotation and scattering simulations result in an
expected 7.0(33)% asymmetry signal that could be observed in the most ideal
conditions. Systematic uncertainties in the solid angle and scattering simulations
contribute to about half of the uncertainty.

In the second phase of the project, the signal would need to be improved
significantly [30] in order to approach the requirements to measure the b-
asymmetry parameter of 35Ar with a relative precision of 0.5%. As the current
major loss of signal is due to population distribution across multiple levels
following charge exchange, state selective re-ionization offers a large possible
increase in signal. As collisional re-ionization only offers a possible enhancement
factor of 2.3, laser re-ionization with a gain factor of 6.25 is more favorable as
the estimated final measuring time goes from approximately 80 days to only a
few days. As the crystal quickly develops condensation at low temperatures,
improvements to the vacuum are needed to extend the useful measuring time and
reduce duty-cycle losses. Of critical importance are high-precision simulations
of the setup to determine the required solid angle and the effect of scattering.
These results will determine the location and size of the detectors, and their
allowed deviation thereof.
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Included source code

In data we trust; Let us focus on the biggest sums
of life; It’s now a matter of life and math

—Epica, The Cosmic Algorithm

A.1 Rate equation implementation

The source code presented in this section is the extension of the BaseModel
class of the SATLAS package used in the optical pumping simulations and fits.
By extending the BaseModel class and providing a link between a dictionary of
parameters and the numerical values used in the optical pumping matrices, the
full suite of analysis options available in SATLAS can be used with this set of
differential equations.

1 import numpy as np
2 from satlas . profiles import Voigt , Lorentzian
3 from satlas . models . basemodel import BaseModel , SATLASParameters
4 from scipy import integrate
5 from sympy . physics . wigner import wigner_6j , wigner_3j
6 import scipy . constants as csts
7 import lmfit
8 import itertools
9

10 W6J = wigner_6j
11 W3J = wigner_3j
12

13 __all__ = [’RateModelDecay ’, ’RateModelPolar ’]

127
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14

15 # Define constants
16 C = csts. physical_constants [’speed of light in vacuum ’][0] # Speed of light

, m/s
17 H = csts. physical_constants [’Planck constant ’][0] # Planck ’s constant , Js
18 PI = np.pi # pi ...
19 GL = 1.0 # Orbital g- factor
20 GS = 2.00232 # Spin g- factor
21 MUB = csts. physical_constants [’Bohr magneton ’][0] # Bohr magneton
22 EV_TO_MHZ = csts. physical_constants [’electron volt - hertz relationship ’][0] *

1e -6 # eV to MHz conversion factor
23

24 # ######################
25 # CALCULATION OBJECTS #
26 # ######################
27

28 class BxRho_Voigt ( Voigt ):
29 def __init__ (self , A=None , fwhmG =None , mu=None , laser =None , fwhmL =None):
30 self. _fwhmG = fwhmG
31 self. _fwhmL = fwhmL
32 self. _laser = laser
33 self._A = A
34 self. _lorentzian = 0
35 super ( BxRho_Voigt , self). __init__ (mu=mu , fwhm =[ fwhmG , fwhmL ],

ampIsArea =True , amp =1.0)
36

37 @property
38 def A(self):
39 return self._A
40

41 @A. setter
42 def A(self , value ):
43 self._A = value
44 self. set_factor ()
45

46 @property
47 def gaussian (self):
48 return self. _gaussian
49

50 @gaussian . setter
51 def gaussian (self , value ):
52 self. _gaussian = value
53 self.fwhm = [value , self. fwhmL ]
54

55 @property
56 def lorentzian (self):
57 return self. _lorentzian
58

59 @lorentzian . setter
60 def lorentzian (self , value ):
61 self. _lorentzian = value
62 self.fwhm = [self.fwhmG , value ]
63

64 @property
65 def mu(self):
66 return self._mu
67

68 @mu. setter
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69 def mu(self , value ):
70 self._mu = value * 1e6
71 self. set_factor ()
72

73 @property
74 def laser (self):
75 return self. _laser
76

77 @laser . setter
78 def laser (self , value ):
79 self. _laser = value
80 self. set_factor ()
81

82 def set_factor (self):
83 self. _factor = self.A * self. laser * C * C / (8 * PI * H * self.mu *

self.mu)
84

85 def __call__ (self , x):
86 return super ( BxRho_Voigt , self). __call__ (x*1 e6) * self. _factor / (x

*1 e6)
87

88 class BxRho_Lorentzian ( Lorentzian ):
89 def __init__ (self , A=None , mu=None , laser =None , fwhm=None):
90 self. _laser = laser
91 self._A = A
92 super ( BxRho_Lorentzian , self). __init__ (mu=mu , fwhm=fwhm , ampIsArea =

True , amp =1.0)
93

94 @property
95 def A(self):
96 return self._A
97

98 @A. setter
99 def A(self , value ):

100 self._A = value
101 self. set_factor ()
102

103 @property
104 def mu(self):
105 return self._mu
106

107 @mu. setter
108 def mu(self , value ):
109 self._mu = value * 1e6
110 self. set_factor ()
111

112 @property
113 def laser (self):
114 return self. _laser
115

116 @laser . setter
117 def laser (self , value ):
118 self. _laser = value
119 self. set_factor ()
120

121 def set_factor (self):
122 self. _factor = self.A * self. laser * C * C / (8 * PI * H * self.mu *

self.mu)
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123

124 def __call__ (self , x):
125 return super ( BxRho_Lorentzian , self). __call__ (x * 1e6) * self.

_factor / (x * 1e6)
126

127 # #############
128 # MAIN CLASS #
129 # #############
130 class RateModel ( BaseModel ):
131 def __init__ (self , I, J, L, ABC , centroids , energies , A_array , scale

=1.0 , shape =’Voigt ’, laser_intensity =80 , laser_mode =None ,
interaction_time =1e-6, fwhmG =0.1 , fwhmL =None , backgroundparams =[0] ,
field =0, fixed_frequencies =None , frequency_mode =’fixed ’, purity =1.0 ,
pi_detect =1.0 , sigma_detect =1.0) :

132 super (RateModel , self). __init__ ()
133 self.I = I
134 self.J = J
135 self.L = L
136 self. A_array = A_array
137 self. shape = shape
138

139 try:
140 lasers = len( laser_intensity )
141 except :
142 laser_intensity = [ laser_intensity ]
143 laser_mode = [ laser_mode ]
144 if fixed_frequencies is not None:
145 self. fixed_frequencies = fixed_frequencies
146 else :
147 self. fixed_frequencies = []
148 self. vary_freqs = len( laser_intensity ) - len(self. fixed_frequencies )
149 self. frequency_mode = frequency_mode
150

151 self. laser_intensity = laser_intensity
152 self.mode = laser_mode
153

154 self. _calculate_F_levels ()
155 self. _set_energies ( energies )
156 self. _calculate_energy_coefficients ()
157

158 self. _set_population ()
159 self. _populateparams ( laser_intensity , ABC , centroids , shape , scale ,

fwhmG , fwhmL , interaction_time , backgroundparams , field , purity ,
pi_detect , sigma_detect )

160 self. _calculate_A_partial ()
161 self. _calculate_energy_changes ()
162 self. _create_D_matrix ()
163

164 self. params = self. params
165

166 @property
167 def params (self):
168 return self. _parameters
169

170 @params . setter
171 def params (self , params ):
172 p = params .copy ()
173 p. _prefix = self. _prefix
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174 self. _parameters = self. _check_variation (p)
175 self. _calculate_energy_changes ()
176 A = np. zeros (( self. level_counts_cs [-1], self. level_counts_cs [ -1]))
177 for key in self. transition_indices :
178 for x, y in self. transition_indices [key ]:
179 A[x, y] = params [key ]. value
180 A = A * self. partial_A
181 A = np. transpose (A) - np.eye(A. shape [0]) * A.sum(axis =1)
182 self. A_array_used = A
183 self. _edit_D_matrix ()
184

185 def _set_energies (self , energies ):
186 N = self. level_counts .sum ()
187 # Pre - allocate the energy and population vectors .
188 E = np. zeros (N)
189 Nlevcs = self. level_counts . cumsum ()
190 for i, (n, ncs) in enumerate (zip(self. level_counts , Nlevcs )):
191 E[ncs - n:ncs] = energies [i]
192 self. energies = E * EV_TO_MHZ
193

194 def _populateparams (self , laser_intensity , ABC , centroids , shape , scale ,
fwhmG , FWHML , interaction_time , backgroundparams , field , purity ,

pi_detect , sigma_detect ):
195 p = SATLASParameters ()
196 for i, val in enumerate ( laser_intensity ):
197 p.add(’Laser_intensity_ ’ + str(i), value =val , min =0, max=None)
198 for i, j in enumerate (self. Jlist ):
199 p.add(’A_level_ ’ + str(i), value =ABC[i ][0])
200 p.add(’B_level_ ’ + str(i), value =ABC[i ][1])
201 p.add(’C_level_ ’ + str(i), value =ABC[i ][2])
202 if not i == len(self. Jlist ) -1:
203 p.add(’Centroid_level_ ’ + str(i), value = centroids [i])
204 else :
205 p.add(’Centroid_level_ ’ + str(i), value =0, vary= False )
206 for i, _ in enumerate (self. level_counts ):
207 for j, _ in enumerate (self. level_counts ):
208 if i < j and np. isfinite (self. A_array [i, j]):
209 p.add(’Transition_strength_ ’ + str(i) + ’_to_ ’ + str(j),

value =self. A_array [i, j], min =0, vary= False )
210 fwhmL = self. A_array [i, j ]/(2* PI)*1e -6 if FWHML is None

else FWHML
211 p.add(’FWHML_ ’ + str(i) + ’_to_ ’ + str(j), value =fwhmL ,

min =0)
212 if shape . lower () == ’voigt ’:
213 par_lor_name = ’FWHML_ ’ + str(i) + ’_to_ ’ + str(j)
214 par_gauss_name = ’FWHMG_ ’ + str(i) + ’_to_ ’ + str(j)
215 expr = ’0.5346*{0}+(0.2166*{0}**2+{1}**2) **0.5 ’
216 p.add(’FWHMG_ ’ + str(i) + ’_to_ ’ + str(j), value =

fwhmG , min =0.0001)
217 p.add(’TotalFWHM_ ’ + str(i) + ’_to_ ’ + str(j), value

=0, vary=False , expr=expr. format ( par_lor_name , par_gauss_name ))
218 else :
219 p.add(’FWHMG ’, value =fwhmG , vary= fwhmG > 0, min =0)
220 p.add(’Scale ’, value = scale )
221 p.add(’Interaction_time ’, value = interaction_time , min =0)
222 for i, val in enumerate ( reversed ( backgroundparams )):
223 p.add(’Background ’ + str(i), value = backgroundparams [i])
224 self. background_degree = i
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225 p.add(’Field ’, value = field )
226 p.add(’Purity ’, value =purity , min =0, max =1)
227 p.add(’pi_detect ’, value =pi_detect , min =0, max =1, vary= False )
228 p.add(’sigma_detect ’, value = sigma_detect , min =0, max =1, vary= False )
229 self. _parameters = self. _check_variation (p)
230

231 def _check_variation (self , p):
232 for key in self. _vary :
233 if key in p:
234 p[key ]. vary = self. _vary [key]
235

236 for i, j in enumerate (self. Jlist ):
237 if j[0] < 1.5 or self.I < 1.5:
238 p[’C_level_ ’ + str(i)]. value = 0
239 p[’C_level_ ’ + str(i)]. vary = False
240 if j[0] < 1.0 or self.I < 1.0:
241 p[’B_level_ ’ + str(i)]. value = 0
242 p[’B_level_ ’ + str(i)]. vary = False
243 if j[0] < 0.5 or self.I < 0.5:
244 p[’A_level_ ’ + str(i)]. value = 0
245 p[’A_level_ ’ + str(i)]. vary = False
246 return p
247

248 def _calculate_F_levels (self):
249 I = self.I
250 J = self.J
251 L = self.L
252 self. Flist = []
253 self. MFlist = []
254 self. Jlist = []
255 self. Llist = []
256 dummyJ = np. array ([])
257 dummyF = np. array ([])
258 dummyFz = np. array ([])
259 dummy = np. array ([])
260 dummyL = np. array ([])
261 for i, (j, l) in enumerate (zip(J, L)):
262 F = np. arange (np.abs(j - I), j + I + 1) # Values of F
263

264 Flen = (2 * F + 1). astype (’int ’) # Lengths of F_z
265 starts = np. cumsum (np. append ([0] , Flen [: -1])) # Index for

different F states
266

267 # Pre - allocate
268 f = np. zeros (int ((2 * F + 1).sum ())) # F- states
269 mz = np. zeros (int ((2 * F + 1).sum ())) # F_z - states
270

271 # Fill the pre - allocated arrays
272 for i, (entry , start ) in enumerate (zip(Flen , starts )):
273 mz[ start : start + entry ] = np. arange (-F[i], F[i] + 1)
274 f[ start : start + entry ] = F[i]
275 self. Flist . append (f)
276 self. MFlist . append (mz)
277 self. Jlist . append ([j]* len(f))
278 self. Llist . append ([l]* len(f))
279 dummyF = np. append (dummyF , f)
280 dummyFz = np. append (dummyFz , mz)
281 dummyJ = np. append (dummyJ , np.ones(len(f))*j)
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282 dummyL = np. append (dummyL , np.ones(len(f))*l)
283 dummy = np. append (dummy , np. array ([ len(f)]))
284 self.F = dummyF
285 self.Mf = dummyFz
286 self.J = dummyJ
287 self.L = dummyL
288 self. level_counts = dummy . astype (’int ’)
289 self. level_counts_cs = self. level_counts . cumsum ()
290

291 def _calculate_energy_coefficients (self):
292 S = 0.5
293 L = self.L
294 # Since I, J and F do not change , these factors can be calculated

once
295 # and then stored .
296 I, J, F = self.I, self.J, self.F
297 C = (F*(F+1) - I*(I+1) - J*(J + 1)) * (J/J) if I > 0 else 0 * J #*(

J/J) is a dirty trick to avoid checking for J=0
298 D = (3*C*(C+1) - 4*I*(I+1)*J*(J+1)) / (2*I*(2*I -1)*J*(2*J -1))
299 E = (10*(0.5* C)**3 + 20*(0.5* C)**2 + C*( -3*I*(I+1)*J*(J+1) + I*(I+1)

+ J*(J+1) + 3) - 5*I*(I+1)*J*(J+1)) / (I*(I -1) *(2*I -1)*J*(J -1) *(2*J -1))
300 C = np. where (np. isfinite (C), 0.5 * C, 0)
301 D = np. where (np. isfinite (D), 0.25 * D, 0)
302 E = np. where (np. isfinite (E), E, 0)
303

304 gJ = GL * (J * (J + 1) + L * (L + 1) - S * (S + 1)) / \
305 (2 * J * (J + 1)) + GS * (J * (J + 1) - L * (L + 1) + S *
306 (S + 1)) / (2 * J * (J + 1))
307 gJ = np. where (np. isfinite (gJ), gJ , 0)
308 gF = gJ * (F * (F + 1) + J * (J + 1) - I * (I + 1)) / \
309 (2 * F * (F + 1))
310 gF = np. where (np. isfinite (gF), -gF , 0)
311 self.A_coeff , self.B_coeff , self.C_coeff , self. field_coeff = C, D, E

, gF * MUB * self.Mf * ((10 ** ( -6)) / H)
312

313 def _calculate_energy_changes (self):
314 field = self. params [’Field ’]. value
315 A = np. zeros (self. level_counts_cs [ -1])
316 B = np. zeros (self. level_counts_cs [ -1])
317 C = np. zeros (self. level_counts_cs [ -1])
318 centr = np. zeros (self. level_counts_cs [ -1])
319 for i, (ncs , n) in enumerate (zip(self. level_counts_cs , self.

level_counts )):
320 A[ncs -n:ncs] = self. params [’A_level_ ’ + str(i)]. value
321 B[ncs -n:ncs] = self. params [’B_level_ ’ + str(i)]. value
322 C[ncs -n:ncs] = self. params [’C_level_ ’ + str(i)]. value
323 centr [ncs -n:ncs] = self. params [’Centroid_level_ ’ + str(i)]. value
324 self. energy_change = centr + self. A_coeff * A + self. B_coeff * B +

self. C_coeff * C + self. field_coeff * field
325

326 def _set_population (self , level = -1):
327 try:
328 levels = len( level )
329 except :
330 levels = 1
331 level = [ level ]
332 total_number = sum(self. level_counts [ level ])
333 P = np. zeros (self. level_counts_cs [ -1])
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334 for lev in level :
335 N = self. level_counts_cs [lev]
336 P[N - self. level_counts [lev ]:N] = 1.0 / total_number
337 self.P = P
338

339 def _calculate_A_partial (self):
340 I = self.I
341 J = self. Jlist
342 F = self. Flist
343 Mf = self. MFlist
344 N = self. level_counts_cs [ -1]
345 self. partial_A = np. zeros ((N, N))
346 self. transition_indices = {}
347 self. characters = {0: {’x’: [], ’y’: []} , 1: {’x’: [], ’y’: []}}
348 for i, _ in enumerate (self. level_counts ):
349 for j, _ in enumerate (self. level_counts ):
350 if i < j and not np. isclose (self. A_array [i, j], 0):
351 indices_ex = []
352 indices_gr = []
353 for k, (Jex , Fe , Mze) in enumerate (zip(J[i], F[i], Mf[i

])):
354 for l, (Jgr , Fg , Mzg) in enumerate (zip(J[j], F[j],

Mf[j])):
355 A = float ((2 * Jex + 1) * (2 * Fe + 1) * (2 * Fg

+ 1))
356 W3 = W3J(Fg , 1.0 , Fe , -Mzg , Mzg - Mze , Mze)
357 W6 = W6J(Jgr , Fg , I, Fe , Jex , 1.0)
358 A = A * (W3 ** 2)
359 A = A * (W6 ** 2)
360 x = self. level_counts_cs [i] - self. level_counts [

i] + k
361 y = self. level_counts_cs [j] - self. level_counts [

j] + l
362 self. partial_A [x, y] = A
363 indices_ex . append (x)
364 indices_gr . append (y)
365 if A > 0:
366 self. characters [int(np.abs(Mzg -Mze))][ ’x’].

append (x)
367 self. characters [int(np.abs(Mzg -Mze))][ ’y’].

append (y)
368 self. transition_indices [’Transition_strength_ ’ + str(i)

+ ’_to_ ’ + str(j)] = list (zip( indices_ex , indices_gr ))
369

370 def _create_D_matrix (self):
371 N = self. level_counts_cs [ -1]
372 D = np. zeros ((N, N, len(self. laser_intensity )), dtype =’object ’)
373 bxrho = BxRho_Voigt if self. shape . lower () == ’voigt ’ else

BxRho_Lorentzian
374

375 self. indices = []
376 for laser_index , laser in enumerate (self. laser_intensity ):
377 for i, j in itertools . combinations ( range (len(self. level_counts ))

, 2):
378 for k, (fe , mze) in enumerate (zip(self. Flist [i], self. MFlist

[i])):
379 for l, (fg , mzg) in enumerate (zip(self. Flist [j], self.

MFlist [j])):
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380 x = self. level_counts_cs [i] - self. level_counts [i] +
k

381 y = self. level_counts_cs [j] - self. level_counts [j] +
l

382 if np. isclose (self. A_array [i, j], 0) or np. isclose (
self. partial_A [x, y], 0):

383 continue
384 purity = self. params [’Purity ’]. value
385 frac = purity if self.mode[ laser_index ] == (mze -

mzg) else (1.0 - purity ) if 0 == -(mze - mzg) else 0
386 if frac == 0:
387 pass
388 else :
389 intensity = frac * self. params [’Laser_intensity_

’ + str( laser_index )]. value
390 A = self. params [’Transition_strength_ ’ + str(i)

+ ’_to_ ’ + str(j)]. value
391 mu = (self. energies [k] + self. energy_change [k])

- (self. energies [l] + self. energy_change [l])
392 kwargs = {’A’: A, ’mu ’: mu , ’laser ’: intensity }
393 if self. shape . lower () == ’voigt ’:
394 kwargs [’fwhmG ’] = self. params [’FWHMG_ ’ + str

(i) + ’_to_ ’ + str(j)]. value * 1e6
395 kwargs [’fwhmL ’] = self. params [’FWHML_ ’ + str

(i) + ’_to_ ’ + str(j)]. value * 1e6
396 else :
397 kwargs [’fwhm ’] = self. params [’FWHML_ ’ + str(

i) + ’_to_ ’ + str(j)]. value * 1e6
398 D[x, y, laser_index ] = bxrho (** kwargs )
399 self. indices . append ((x, y, laser_index , i, j,

mze , mzg))
400

401 self.D = D
402

403 def _edit_D_matrix (self):
404 self. locations = []
405 self. transitions = []
406 for x, y, laser_index , i, j, mze , mzg in self. indices :
407 purity = self. params [’Purity ’]. value
408 frac = purity if self.mode[ laser_index ] == (mze - mzg) else (1.0

- purity ) if 0 == -(mze - mzg) else 0
409 intensity = frac * self. params [’Laser_intensity_ ’ + str(

laser_index )]. value
410 A = self. A_array_used [y, x]
411 mu = (self. energies [x] + self. energy_change [x]) - (self. energies

[y] + self. energy_change [y])
412 self.D[x, y, laser_index ]. mu = mu
413 self.D[x, y, laser_index ].A = A
414 if self. shape . lower () == ’voigt ’:
415 self.D[x, y, laser_index ]. gaussian = self. params [’FWHMG_ ’ +

str(i) + ’_to_ ’ + str(j)]. value * 1e6
416 self.D[x, y, laser_index ]. lorentzian = self. params [’FWHML_ ’

+ str(i) + ’_to_ ’ + str(j)]. value * 1e6
417 else :
418 self.D[x, y, laser_index ]. fwhm = self. params [’FWHML_ ’ + str(

i) + ’_to_ ’ + str(j)]. value * 1e6
419 self.D[x, y, laser_index ]. laser = intensity
420 self. locations . append (mu)
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421 self. transitions . append (( self.F[x], self.F[y]))
422 self.locations , indices = np. unique (np. array (self. locations ),

return_index =True)
423 self. transitions = np. array (self. transitions )[ indices ]
424

425 def _evaluate_matrices (self , f):
426 D = np. zeros (self.D. shape )
427 for i, j, laser_index , _, _, _, _ in self. indices :
428 if laser_index < self. vary_freqs :
429 freq = f
430 else :
431 freq = self. fixed_frequencies [ laser_index - self. vary_freqs ]
432 if self. frequency_mode . lower () == ’offset ’:
433 freq += f
434 D[i, j, laser_index ] = self.D[i, j, laser_index ]( freq)
435

436 D = D.sum(axis =2)
437 D = np. transpose (D) + D
438 D = D - np.eye(D. shape [0]) * D.sum(axis =0)
439 self.M = self. A_array_used + D
440 self. decay_rates = np.copy(self.M)
441 self. decay_rates [self. characters [0][ ’y’], self. characters [0][ ’x’]]

*= self. params [’pi_detect ’]. value
442 self. decay_rates [self. characters [1][ ’y’], self. characters [1][ ’x’]]

*= self. params [’sigma_detect ’]. value
443 self. decay_rates = np.tril(self. decay_rates , -1).sum(axis =0)
444

445 def _rhsint (self , y, t):
446 """ Define the system of ODE ’s for use in the odeint method from

SciPy .
447 Note that the input is (y, t)."""
448 return np.dot(self.M, y)
449

450 def _rhs(self , t, y):
451 """ Define the system of ODE ’s for use in the odeint method from

SciPy .
452 Note that the input is (y, t)."""
453 return np.dot(self.M, y)
454

455 def _jacobian (self , *args):
456 return self.M
457

458 def _process_population (self , y):
459 raise NotImplementedError (’Function should be implemented in child

classes !’)
460

461 def get_level_population (self):
462 return [self.P[ncs -n:ncs ]. sum () for ncs , n in zip(self.

level_counts_cs , self. level_counts )]
463

464 def set_relative_population (self , relative_population ):
465 for p, (ncs , n) in zip( relative_population , zip(self. level_counts_cs

, self. level_counts )):
466 self.P[ncs -n:ncs] = p/n
467 self.P /= self.P.sum ()
468 return None
469

470 def __call__ (self , x):
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471

472 try:
473 response = np. zeros (x.size)
474 for i, f in enumerate (x. flatten ()):
475 self. _evaluate_matrices (f)
476 dt = self. params [’Interaction_time ’]. value / 400
477 y = integrate . odeint (self._rhsint , self.P, np. arange (0, self

. params [’Interaction_time ’]. value , dt), Dfun=self. _jacobian )
478 response [i] = self. _process_population (y)[ -1]
479 response = response . reshape (x. shape )
480 except :
481 self. _evaluate_matrices (x)
482 dt = self. params [’Interaction_time ’]. value / 400
483 y = integrate . odeint (self._rhsint , self.P, np. arange (0, self.

params [’Interaction_time ’]. value , dt), Dfun=self. _jacobian )
484 response = self. _process_population (y)[ -1]
485 response = self. params [’Scale ’]. value * response
486 backgroundparams = [self. params [’Background ’ + str(int(deg))]. value

for deg in reversed ( list ( range (self. background_degree + 1)))]
487 return response + np. polyval ( backgroundparams , x)
488

489 def integrate_with_time (self , x, beginning , duration , steps =401 , mode=’
integral ’):

490 backup = self. params [’Interaction_time ’]. value
491 self. params [’Interaction_time ’]. value = beginning
492 time_vector = np. linspace (beginning , beginning + duration , steps )
493 try:
494 response = np. zeros (x.size)
495 for i, f in enumerate (x. flatten ()):
496 self. _evaluate_matrices (f)
497 dt = self. params [’Interaction_time ’]. value / 400
498 if not np. isclose (dt , 0):
499 y = integrate . odeint (self._rhsint , self.P, np. arange (0,

self. params [’Interaction_time ’]. value , dt), Dfun=self. _jacobian )
500 y = integrate . odeint (self._rhsint , y[-1, :], time_vector

, Dfun=self. _jacobian )
501 else :
502 y = integrate . odeint (self._rhsint , self.P, time_vector ,

Dfun=self. _jacobian )
503 y = self. _process_population (y)
504 response [i] = integrate . simps (y, time_vector )
505 except :
506 self. _evaluate_matrices (x)
507 dt = self. params [’Interaction_time ’]. value / 400
508 if not np. isclose (dt , 0):
509 y = integrate . odeint (self._rhsint , self.P, np. arange (0, self

. params [’Interaction_time ’]. value , dt), Dfun=self. _jacobian )
510 y = integrate . odeint (self._rhsint , y[-1, :], time_vector ,

Dfun=self. _jacobian )
511 else :
512 y = integrate . odeint (self._rhsint , self.P, time_vector , Dfun

=self. _jacobian )
513 y = self. _process_population (y)
514 if mode == ’integral ’:
515 response = integrate . simps (y, time_vector )
516 elif mode == ’mean ’ or mode == ’average ’:
517 response = np.mean(y)
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518 response = self. params [’Scale ’]. value * response + self. params [’
Background0 ’]. value

519 self. params [’Interaction_time ’]. value = backup
520 return response
521

522 def time_response (self , x, beginning , duration , steps =401 , populations
=[ -1]):

523 time_vector = np. linspace (beginning , beginning +duration , steps )
524 backgroundparams = [self. params [’Background ’ + str(int(deg))]. value

for deg in reversed ( list ( range (self. background_degree + 1)))]
525 try:
526 response = np. zeros ((x. shape [0] , time_vector . shape [0]))
527 pops = np. zeros ((x. shape [0] , time_vector . shape [0] , len(

populations )))
528 for i, f in enumerate (x. flatten ()):
529 self. _evaluate_matrices (f)
530 if not np. isclose (beginning , 0):
531 dt = self. params [’Interaction_time ’]. value / 400
532 y = integrate . odeint (self._rhsint , self.P, np. arange (0,

self. params [’Interaction_time ’]. value , dt), Dfun=self. _jacobian )
533 begin_pop = y[ -1]
534 else :
535 begin_pop = self.P
536 y = integrate . odeint (self._rhsint , begin_pop , time_vector ,

Dfun=self. _jacobian )
537 response [i] = self. params [’Scale ’]. value * self.

_process_population (y) + np. polyval ( backgroundparams , f)
538 pops[i] = self. _get_fine_populations (y, populations =

populations )
539 except :
540 self. _evaluate_matrices (x)
541 if not np. isclose (beginning , 0):
542 dt = self. params [’Interaction_time ’]. value / 400
543 y = integrate . odeint (self._rhsint , self.P, np. arange (0, self

. params [’Interaction_time ’]. value , dt), Dfun=self. _jacobian )
544 begin_pop = y[ -1]
545 else :
546 begin_pop = self.P
547 y = integrate . odeint (self._rhsint , begin_pop , time_vector , Dfun=

self. _jacobian )
548 response = self. params [’Scale ’]. value * self. _process_population

(y) + np. polyval ( backgroundparams , x)
549 pops = self. _get_fine_populations (y, populations = populations )
550 return time_vector , response , pops
551

552 def _get_fine_populations (self , y, populations =[ -1]):
553 pops = []
554 for v in y:
555 pops. append (
556 [v[ncs -n:ncs ]. sum () for ncs , n in zip(self. level_counts_cs [

populations ], self. level_counts [ populations ])]
557 )
558 return np. array (pops)
559

560 class RateModelDecay ( RateModel ):
561 def _process_population (self , y):
562 return np. einsum (’j,kj ->k’, self. decay_rates , y)
563
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564 class RateModelPolar ( RateModel ):
565 def __init__ (self , *args , ** kwargs ):
566 super ( RateModelPolar , self). __init__ (* args , ** kwargs )
567 self. _convertFMftoMIMJ ()
568

569 def _convertFMftoMIMJ (self):
570 self. MIlist = []
571 self. MJlist = []
572 self.MI = np. array ([])
573 self.MJ = np. array ([])
574 for i, (J, F, Mf) in enumerate (zip(self.Jlist , self.Flist , self.

MFlist )):
575 I = self.I
576 A = self. params [’A_level_ ’ + str(i)]. value
577 J = J[0]
578

579 # Create the array of possible F- values .
580 f = np. arange (np.abs(I - J), I + J + 1)
581

582 # Create grids of MI and MJ
583 I = np. arange (-I, I + 1)
584 J = np. arange (-J, J + 1)
585 I, J = np. meshgrid (I, J)
586

587 # Calculate the total projection
588 mf = I + J
589

590 # Create an equal -size matrix with the correct
591 # F- numbers in each place , depending on the sign of A
592 M = np. zeros (I. shape )
593 for i, val in enumerate ( reversed (f)):
594 if np.sign(A) == 1:
595 if i != 0:
596 M[0: -i, i] = val
597 M[-i - 1, i:] = val
598 else :
599 M[:, 0] = val
600 M[-1, :] = val
601 else :
602 M[i, 0:- 1 - i] = val
603 M[i:, - 1 - i] = val
604

605 f_select = []
606 m_select = []
607 for f, m in zip(F, Mf):
608 f_select . append (np. isclose (M, f))
609 m_select . append (np. isclose (mf , m))
610 MI = []
611 MJ = []
612 for f, mf in zip(f_select , m_select ):
613 MI. append (I[np. bitwise_and (f, mf) ][0])
614 MJ. append (J[np. bitwise_and (f, mf) ][0])
615 self. MIlist . append (MI)
616 self. MJlist . append (MJ)
617 self.MI = np. append (self.MI , np. array (MI))
618 self.MJ = np. append (self.MJ , np. array (MJ))
619

620 def _process_population (self , y):
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621 return np. einsum (’j,kj ->k’, self.MI , y) / self.I

A.2 Quantum simulations code

In order to simulate the rotation of the nuclear and electron spin in the applied
external field, the following code using the QuTiP package was implemented
and used.

1 import qutip as qt
2 import numpy as np
3 import pathlib
4 from scipy . interpolate import interp1d
5 from scipy . constants import physical_constants
6 import scipy . integrate as integrate
7

8 new_dict_35ar = {(0.5 , -0.5): 0.13128594381070291 , (0.5 , 0.5):
0.20732073182232927 , (1.5 , -1.5): 2.0213777697611927e -16 , (1.5 , -0.5):
7.1920169974662088e -05 , (1.5 , 0.5): 0.00032833742111606118 , (1.5 , 1.5):
0.10556403066631834 , (2.5 , -2.5): 1.4664467690758376e -15 , (2.5 , -1.5):
1.6986636356929244e -15 , (2.5 , -0.5): 4.9445999860413073e -07 , (2.5 , 0.5):

2.3843510123591184e -06 , (2.5 , 1.5): 6.2515158772916642e -05 , (2.5 , 2.5):
0.00051917050261505765 , (3.5 , -3.5): 2.4175297242932896e -12 , (3.5 ,

-2.5): 1.3978814335234604e -12 , (3.5 , -1.5): 3.0008385031968567e -12 ,
(3.5 , -0.5): 4.902807170453987e -08 , (3.5 , 0.5): 3.2620946348784102e -07 ,
(3.5 , 1.5): 9.1056444057181363e -06 , (3.5 , 2.5): 0.00012725278722455733 ,
(3.5 , 3.5): 0.55470773796117456}

9 new_dict_35ar_noaom = {(0.5 , -0.5): 0.062316793834386236 , (0.5 , 0.5):
0.063034635024421068 , (1.5 , -1.5): 0.072290814707542159 , (1.5 , -0.5):
0.10002975760771218 , (1.5 , 0.5): 0.10712964492288424 , (1.5 , 1.5):
0.099343084438554566 , (2.5 , -2.5): 0.036289433728370457 , (2.5 , -1.5):
0.028554668255823226 , (2.5 , -0.5): 0.027288188894721791 , (2.5 , 0.5):
0.030899968816904884 , (2.5 , 1.5): 0.041958684126567808 , (2.5 , 2.5):
0.070217031657739737 , (3.5 , -3.5): 5.1488546116229653e -13 , (3.5 , -2.5):
2.1079703129444153e -06 , (3.5 , -1.5): 3.6477986956642128e -06 , (3.5 , -0.5)
: 6.602099465026341e -06 , (3.5 , 0.5): 1.1929906708342068e -05 , (3.5 , 1.5):

2.4085448794856476e -05 , (3.5 , 2.5): 6.8555536908427504e -05 , (3.5 , 3.5):
0.26053036522297141}

10 new_dict_28na = {(0.5 , -0.5): 0.19190123808040271 , (0.5 , 0.5):
0.19530372400561233 , (1.5 , -1.5): 2.2480552435369259e -11 , (1.5 , -0.5):
6.7376396348705003e -07 , (1.5 , 0.5): 6.4054092557849843e -06 , (1.5 , 1.5):
0.61278795871828506}

11 new_dict_26na = {(2.5 , -2.5): 0.077576233809443812 , (2.5 , -1.5):
0.079430874035601354 , (2.5 , -0.5): 0.077433252441602402 , (2.5 , 0.5):
0.079374503702014418 , (2.5 , 1.5): 0.084613321942975786 , (2.5 , 2.5):
0.091105323777625188 , (3.5 , -3.5): 0.0069568692200341177 , (3.5 , -2.5):
0.00059710468993008864 , (3.5 , -1.5): 0.00043804576815889736 , (3.5 , -0.5)
: 0.00055963127832789057 , (3.5 , 0.5): 0.0013022663512108647 , (3.5 , 1.5):

0.0040675363422603408 , (3.5 , 2.5): 0.04276007460509243 , (3.5 , 3.5):
0.45378496203572238}

12 new_dicts = {’35 Ar ’: new_dict_35ar , ’26 Na ’: new_dict_26na , ’28 Na ’:
new_dict_28na , ’35 ArNoAOM ’: new_dict_35ar_noaom }

13
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14 BOHR = 13.996245042 * 10**9
15 NUCL = 7.622593285 * 10**6
16

17 moments = {’35 Ar ’: 0.633 , ’35 ArNoAOM ’: 0.633 , ’28 Na ’: 2.426 , ’26 Na ’: 2.851 ,
}

18

19 masses = {’35 Ar ’: 5.80777807 * 10** -26 , ’35 ArNoAOM ’: 5.80777807 * 10** -26 , ’
28 Na ’: 27.998938 * physical_constants [’atomic mass unit - kilogram
relationship ’][0] , ’26 Na ’: 25.992633 * physical_constants [’atomic mass
unit - kilogram relationship ’][0] , }

20

21 spins = {’35 Ar ’: 3/2 , ’35 ArNoAOM ’: 3/2 , ’28 Na ’: 1, ’26 Na ’: 3, }
22 atomics = {’35 Ar ’: (2, 1.5 , 0.5) , ’35 ArNoAOM ’: (2, 1.5 , 0.5) , ’28 Na ’: (0.5 ,

1.0 , 0.5) , ’26 Na ’: (0.5 , 1.0 , 0.5) , }
23

24 hyperfines = {’35 Ar ’: 266.0 e0 , ’35 ArNoAOM ’: 266.0 e0 , ’28 Na ’: 154.7 e0 , ’26 Na ’
: 60.6e0 , }

25

26 def generate_matrix ( selection =’35 Ar ’):
27 """ Generate Mathematica - compliant version of the interaction matrix , to

calculate the eigenvalues as a function of magnetic field .
28

29 Parameters
30 ----------
31 selection : str
32 Key for the dictionaries defined above
33 """
34 SELECTION = selection
35

36 MAGNETIC_MOMENT = moments [ SELECTION ]
37

38 I = spins [ SELECTION ]
39 J, L, S = atomics [ SELECTION ]
40

41 if np. isclose (J, 0):
42 LANDE = 0
43 else :
44 LANDE = (J*(J+1) -S*(S+1)+L*(L+1))/(2*J*(J+1)) + 2*(J*(J+1)+S*(S+1) -L

*(L+1))/(2*J*(J+1))
45

46 F = [temp for temp in np. arange (np.abs(I-J), I+J+1 ,1) for _ in range (int
(np.abs (2* temp +1)))]

47 mF = [a for temp in np. arange (np.abs(I-J), I+J+1 ,1) for a in np. arange (-
temp , temp +1, 1)]

48

49 A = hyperfines [ SELECTION ]
50 if A < 0:
51 F = F[:: -1]
52 mF = mF [:: -1]
53 F = np. array (F)
54 mF = np. array (mF)
55

56 Ix , Iy , Iz = qt.jmat(I)
57

58 Iz = qt.jmat(I, ’z’)
59 Id = Iz.dims [0][0]
60 Jz = qt.jmat(J, ’z’)
61 Jd = Jz.dims [0][0]



www.manaraa.com

142 INCLUDED SOURCE CODE

62

63 Iz = qt. tensor (qt.jmat(I, ’z’), qt.qeye(Jd))
64 Ix = qt. tensor (qt.jmat(I, ’x’), qt.qeye(Jd))
65 Iy = qt. tensor (qt.jmat(I, ’y’), qt.qeye(Jd))
66

67 Jz = qt. tensor (qt.qeye(Id), qt.jmat(J, ’z’))
68 Jx = qt. tensor (qt.qeye(Id), qt.jmat(J, ’x’))
69 Jy = qt. tensor (qt.qeye(Id), qt.jmat(J, ’y’))
70

71 IZcoeff = -MAGNETIC_MOMENT *NUCL
72

73 JZcoeff = LANDE *BOHR
74

75 HYP = A * (Iz * Jz + Ix * Jx + Iy * Jy)*1 e6
76 import sympy
77 M = sympy . Matrix (HYP.full ())
78 B = sympy . symbols (’B’)
79 magn = B* IZcoeff *Iz.full () + B* JZcoeff *Jz.full ()
80 total = M+magn
81 entries = total . tolist ()
82 print (’{’)
83 for entry in entries :
84 print (’{’ + ’,’.join ([ str(e) for e in entry ]) + ’},’)
85 print (’}’)
86

87 def simulate ( selection =’35 Ar ’, energy =50 , scaling =1.0 , force_recalc =False ,
angle_numbers =10 , pop_dict =None , freq=None):

88 """ Simulate the spin - dynamics in the VITO beamline .
89

90 Parameters
91 ----------
92 selection : str
93 Key for the dictionaries defined above .
94 energy : float
95 Kinetic energy (in keV) of the beam , determines the TOF.
96 scaling : float
97 Scales the total strength of the magnetic field .
98 force_recalc : boolean
99 Forces the recalculation instead of loading the saved file.

100 angle_numbers : int
101 Number of angles between 0 and 2pi to use for the rotation of the

initial ket.
102 pop_dict : dictionary
103 Dictionary ( format given above ) for custom used populations .
104 freq: float
105 Identifier added to the filename .
106 """
107 SELECTION = selection
108 if pop_dict is None:
109 pop_dict = new_dicts [ SELECTION ]
110 features = ’’
111 else :
112 features = str(freq)
113

114 MASS = masses [ SELECTION ]
115

116 MAGNETIC_MOMENT = moments [ SELECTION ]
117
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118 I = spins [ SELECTION ]
119 J, L, S = atomics [ SELECTION ]
120

121 if np. isclose (J, 0):
122 LANDE = 0
123 else :
124 LANDE = (J*(J+1) -S*(S+1)+L*(L+1))/(2*J*(J+1)) + 2*(J*(J+1)+S*(S+1) -L

*(L+1))/(2*J*(J+1))
125

126 A = hyperfines [ SELECTION ]
127

128 ENERGY = energy *10**3
129 EV2JOULES = 1.602176565 * 10** -19
130

131 SPEED = (2* ENERGY * EV2JOULES /MASS) **0.5
132

133 # Magnetic field definition
134

135 y_full = np. array ([120 , 119 , 118 , 117 , 116 , 115 , 114 , 113 , 112 , 111 ,
110 , 109 , 108 , 107 , 106 , 105 , 104 , 103 , 102 , 101 , 100 , 99, 98, 97, 96,
95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 78, 76,
74, 72])

136 y_full = y_full / 100
137 Bx_full = -10** -4* np. array ([0.8 , 0.7 , 1.6 , 5.5 , 8.33 , 5.1 , 1.1 , -1.9, 2,

8.3 , 4.8 , 1.7 , 0.01 , -0.9, -3.6, -4.3, -4.2, -3.8, -3.6, -4.4, -7.6,
-9.5, -11.6 , -17.4 , -17, -8.2, -1.5, -2.6, 17.3 , 24.7 , 34.8 , 31, 47.3 ,
55.4 , 41.6 , 42.8 , 70.5 , 83.8 , 89, 110 , 91.2 , 21.3 , -70.8 , 36.1 , -42.2])

138 By_full = -10** -4* np. array ([ -3.4 , -3.9, -3.6, -0.7, 1.6 , -1.1, -4.9, -8,
-5.4, -0.1, -3.9, -8.4, -12.2 , -15.6 , -18.7 , -22.8 , -27.2 , -32.2 ,

-38.2 , -44.2 , -55.9 , -68.2 , -81.8 , -99.1 , -118.5 , -133.7 , -159.4 , -192,
-237.2 , -283.9 , -346, -421.2 , -524.2 , -621.9 , -765.7 , -926.3 , -1096.5 ,
-1358.3 , -1698.2 , -2072.6 , -2554 , -3209.7 , -3519.3 , -3586.1 , -3607.2])

139 Bz_full = -10** -4* np. array ([ -30.6 , -32.9 , -35.7 , -42.2 , -64.4 , -81.2 ,
-93.3 , -95.6 , -95.5 , -119.2 , -144.4 , -157.7 , -165.7 , -170.2 , -173.3 ,
-175.5 , -177.3 , -179.3 , -181.7 , -183, -183.1 , -179.5 , -171.7 , -155.3 ,
-126.7 , -110.6 , -112.6 , -116.4 , -116.8 , -118.5 , -118.7 , -114.3 , -96.3 ,
-98, -112.4 , -135.3 , -157.6 , -203.3 , -242.15 , -282.5 , -307.3 , -234.8 ,
-126.8 , -100, -87.5])

140 y_full -= y_full .min ()
141 y_full = y_full [:: -1]
142

143 y_magnet = np. array ([120 , 119 , 118 , 117 , 116 , 115 , 114 , 113 , 112 , 111 ,
110 , 109 , 108 , 107 , 106 , 105 , 104 , 103 , 102 , 101 , 100 , 99, 98, 98, 97,
96, 96, 95, 94, 94, 93, 92, 92, 91, 90, 90, 89, 88, 88, 87, 86, 85, 84,
82, 80, 78, 76, 74, 72, 70])

144 y_magnet = y_magnet / 100
145 Bx_magnet = -10** -4* np. array ([0.15 , 0.7 , 0.6 , 1.1 , 1.5 , -0.09 , 1, 0.7 ,

0.7 , 0.6 , -0.1, 0.8 , 0.8 , 0.9 , -0.2, 0, -0.9, -1, -2.4, -2.7, -3.9,
-4.1, -6.9, 1.16 , -9.1, -11.6 , 1.7 , -12.1 , -6.5, 4.3 , -12.3 , -20.2 , 0.9 ,

-21.3 , -19, 2, 2.9 , 0.4 , 8, -34.5 , -16.7 , -23.168 , -63, 0.3 , 7.9 , 24.1 ,
85.9 , -165.2 , -60.5 , -42.1])

146 By_magnet = -10** -4* np. array ([ -5.2 , -5.6, -6, -6.5, -7.2, -7.6, -8.9,
-9.8, -11.1 , -12.7 , -14.3 , -16.1 , -18.2 , -21.1 , -24.3 , -28, -32.2 ,
-37.1 , -43.3 , -49.6 , -59, -68.9 , -84.5 , -77.9 , -101.2 , -121.8 , -109.5 ,
-144.2 , -175, -161.6 , -213.6 , -256.3 , -244.8 , -309.6 , -379.2 , -359.4 ,
-454.7 , -549.2 , -530.8 , -648, -761.5 , -910.8 , -1051 , -1731 , -2549.5 ,
-3237.4 , -3526.8 , -3591.6 , -3609.7 , -3613.1])
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147 Bz_magnet = -10** -4* np. array ([ -0.8 , -0.7, -1, -0.8, -0.8, -1, -1.2,
-1.3, -1.3, -1.5, -1.6, -1.8, -2.2, -2.6, -3, -3.4, -4.1, -5, -6.1,
-7.3, -8, -9.6, -11.9 , -10.2 , -14.8 , -18.3 , -15.1 , -22, -26.2 , -23.4 ,
-32.9 , -39.4 , -36.1 , -48.4 , -59.8 , -55.1 , -65.5 , -79.2 , -74.5 , -97,
-113.5 , -136.9 , -166.4 , -260.5 , -317.1 , -223.4 , -125.1 , -96, -92.7 ,
-80.4])

148 y_magnet , ind = np. unique (y_magnet , return_index =True)
149 Bx_magnet , By_magnet , Bz_magnet = Bx_magnet [ind ][:: -1] , By_magnet [ind

][:: -1] , Bz_magnet [ind ][:: -1]
150 y_magnet = y_magnet [:: -1]
151

152 y_magnet -= y_magnet .min ()
153 y_magnet = y_magnet [:: -1]
154

155 speed = SPEED
156 y = y_magnet
157

158 t = (y-y[0]) / speed
159

160 t_full = (y_full - y_full [0]) / speed
161 Bx_full [:5] = 0* Bx_full [:5]
162 By_full [:5] = 0* By_full [:5]
163

164 Bx_magnet [:5] = 0* Bx_magnet [:5]
165 By_magnet [:5] = 0* By_magnet [:5]
166

167 Bz_full_inter = interp1d (t_full , Bz_full , bounds_error =False , fill_value
=( Bz_full [0] , Bz_full [ -1]) , kind=’cubic ’)

168 Bx_full_inter = interp1d (t_full , Bx_full , bounds_error =False , fill_value
=( Bx_full [0] , Bx_full [ -1]) , kind=’cubic ’)

169 By_full_inter = interp1d (t_full , By_full , bounds_error =False , fill_value
=( By_full [0] , By_full [ -1]) , kind=’cubic ’)

170

171 Bz_magnet_inter = interp1d (t, Bz_magnet , bounds_error =False , fill_value
=( Bz_magnet [0] , Bz_magnet [ -1]) , kind=’cubic ’)

172 Bx_magnet_inter = interp1d (t, Bx_magnet , bounds_error =False , fill_value
=( Bx_magnet [0] , Bx_magnet [ -1]) , kind=’cubic ’)

173 By_magnet_inter = interp1d (t, By_magnet , bounds_error =False , fill_value
=( By_magnet [0] , By_magnet [ -1]) , kind=’cubic ’)

174

175 Bz_transitional = Bz_full_inter (t) - Bz_magnet_inter (t)
176 Bx_transitional = Bx_full_inter (t) - Bx_magnet_inter (t)
177 By_transitional = By_full_inter (t) - By_magnet_inter (t)
178

179 Bz_transitional_inter = interp1d (t, Bz_transitional , bounds_error =False ,
fill_value =( Bz_transitional [0] , Bz_transitional [ -1]) , kind=’cubic ’)

180 Bx_transitional_inter = interp1d (t, Bx_transitional , bounds_error =False ,
fill_value =( Bx_transitional [0] , Bx_transitional [ -1]) , kind=’cubic ’)

181 By_transitional_inter = interp1d (t, By_transitional , bounds_error =False ,
fill_value =( By_transitional [0] , By_transitional [ -1]) , kind=’cubic ’)

182

183 interZ = lambda t: ( Bz_transitional_inter (t)+ scaling * Bz_magnet_inter (t))
184 interX = lambda t: ( Bx_transitional_inter (t)+ scaling * Bx_magnet_inter (t))
185 interY = lambda t: ( By_transitional_inter (t)+ scaling * By_magnet_inter (t))
186

187 # Operator definitions
188

189 Ix , Iy , Iz = qt.jmat(I)
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190

191 Iz = qt.jmat(I, ’z’)
192 Id = Iz.dims [0][0]
193 Jz = qt.jmat(J, ’z’)
194 Jd = Jz.dims [0][0]
195

196 Iz = qt. tensor (qt.jmat(I, ’z’), qt.qeye(Jd))
197 Ix = qt. tensor (qt.jmat(I, ’x’), qt.qeye(Jd))
198 Iy = qt. tensor (qt.jmat(I, ’y’), qt.qeye(Jd))
199 Im = qt. tensor (qt.jmat(I, ’-’), qt.qeye(Jd))
200 Ip = qt. tensor (qt.jmat(I, ’+’), qt.qeye(Jd))
201

202 I_op = Ix + Iy + Iz
203

204 Jz = qt. tensor (qt.qeye(Id), qt.jmat(J, ’z’))
205 Jx = qt. tensor (qt.qeye(Id), qt.jmat(J, ’x’))
206 Jy = qt. tensor (qt.qeye(Id), qt.jmat(J, ’y’))
207 Jm = qt. tensor (qt.qeye(Id), qt.jmat(J, ’-’))
208 Jp = qt. tensor (qt.qeye(Id), qt.jmat(J, ’+’))
209

210 J_op = Jx + Jy + Jz
211

212 def IXcoeff (t, args):
213 BX = interX (t+args [0])
214 return -MAGNETIC_MOMENT *NUCL*BX/I
215

216 def IYcoeff (t, args):
217 BY = interY (t+args [0])
218 return -MAGNETIC_MOMENT *NUCL*BY/I
219

220 def IZcoeff (t, args):
221 BZ = interZ (t+args [0])
222 return -MAGNETIC_MOMENT *NUCL*BZ/I
223

224 def JXcoeff (t, args):
225 BX = interX (t+args [0])
226 return LANDE *BOHR*BX
227

228 def JYcoeff (t, args):
229 BY = interY (t+args [0])
230 return LANDE *BOHR*BY
231

232 def JZcoeff (t, args):
233 BZ = interZ (t+args [0])
234 return LANDE *BOHR*BZ
235

236 HYP = A * (Iz * Jz + Ix * Jx + Iy * Jy)*1 e6
237

238 H = [HYP , [Ix , IXcoeff ], [Iy , IYcoeff ], [Iz , IZcoeff ], [Jx , JXcoeff ], [
Jy , JYcoeff ], [Jz , JZcoeff ]]

239

240 # Preparing the initial ket
241

242 eigenvals , eigenstates = HYP. eigenstates ()
243 F = []
244 MF = []
245 states = []
246 for val in np. unique (np. around (eigenvals , -4)):
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247 indices = np. isclose (eigenvals , val)
248 f = np. around (( qt. expect (Jz , eigenstates [ indices ])+qt. expect (Iz ,

eigenstates [ indices ])).max () , 1)
249 f = [f]*( indices .sum ())
250 F. extend (f)
251 MF. extend (np. around (( qt. expect (Jz , eigenstates [ indices ])+qt. expect (

Iz , eigenstates [ indices ])), 1))
252 states . extend ( eigenstates [ indices ])
253 weights = np. array ([ pop_dict [f, mf] for f, mf in zip(F, MF)])
254 initial = sum ([(w **0.5) *s for w, s in zip(weights , states )]).unit ()
255

256 # Define calculation objects
257

258 time = np. linspace (0, 1.5*t[-1], 1500)
259

260 options = qt. Options ( nsteps =5000)
261 axis = np. array ([ interX (0) , interY (0) , interZ (0) ])
262 axis = axis /(( axis **2).sum () **0.5)
263 spins_rot = np. array ([ Ix+Jx , Iy+Jy , Iz+Jz ]) *2
264

265 # Prepare naming convention
266

267 name = str( SELECTION +str( energy )+init+ interaction +str( scaling ))
268 name = name+’_’+str( angle_numbers )+’angles ’
269 if features != ’’:
270 name = name+’_’+ features
271

272 try: # Load the file. If it can ’t be loaded , or a recalculation is
demanded , throws an error to be caught

273 if force_recalc :
274 raise ArithmeticError
275 load_folder = pathlib .Path(’Data/’+ SELECTION +’/’)
276 output = qt. qload (( load_folder / name). as_posix ())
277 except : # Do the calculation for every angle requested . Concatenate the

results and save to a file
278 def calculate (angle , axis , spins_rot , H, initial , time , options ):
279 operator = (-1j* angle *np.dot(axis , spins_rot )).expm ()
280 return qt. mesolve (H, operator *initial , time , c_ops =[] , e_ops =[] ,

args =[0] , options =options , progress_bar =True)
281 angles = np. linspace (0, np.pi , angle_numbers +1)
282 angles = angles [: -1]
283 output = qt. serial_map (calculate , angles , task_args =( axis , spins_rot

, H, initial , time , options ), num_cpus =1)
284

285 output . append ( angles . tolist ())
286 save_folder = pathlib .Path(’Data/’ + SELECTION + ’/’)
287 save_folder . mkdir ( parents =True , exist_ok =True)
288 qt. qsave (output , ( save_folder / name). as_posix ())
289

290 operators = Iz , Ix , Iy , Jz , Jx , Jy
291 return output , time , operators , I, J, (interX , interY , interZ ), HAMIL
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Appendix B

Optical detection simulations

You will never feel my touch upon your skin, your
face; For I–; I’m lost without a trace

—Stratovarius, Lost Without A Trace

In the optical setup at both COLLAPS and VITO, fluorescent decay from the
excited ionic or atomic beam is detected with PMT’s. In order to maximize
the detection efficiency, a set of lenses is used to focus the emitted light onto
the surface of the PMT’s. As the index of refraction of the material of the
lenses is wavelength dependent, the optimal point to place the PMT needs to
be recalculated each time. The propagation of light through the optical setup
is calculated via ray tracing techniques and the steps taken in the calculation
are described here.

B.1 Lens system

As the ion/atomic beam emits light from every location overlapping with the
laser beam, the use of aspherical lenses minimizes the loss of detection efficiency
from spherical aberration, where the focal point of the beam changes as the
light enters the lens off-axis. The aspherical lenses in the VITO setup have
been produced by Asphericon GmbH (product number A100-100LPX-S-U), are
plano-convex lenses and have a diameter of 100 mm. The curved surface has

147
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been designed to have the form [88]

z (r) = C
r2

1 +
√

1 − (1 +K)C2
+A2r

2 +A4r
4 +A6r

6 + . . . (B.1)

where the z-axis is assumed to be the optical axis of the lens. z (r) is the
displacement along the z-axis from the surface point on the central axis as a
function of distance r. Table B.1 gives the parameters for the purchased lenses.

Two such aspherical lenses form the imaging system for each PMT. Figure B.1
shows the CAD design of the imaging system. Indicated on this schematic
drawing is the distance from the surface of the lens to the center of the beamline
(76.2 mm), the aperture of the lenses (92 mm), the diameter of the PMT surface
(47.5 mm) and the distance of the PMT to the flat edge of the second lens. This
distance can be increased by using a mechanical spacer to maximize the optical
detection efficiency. When the wavelength indicates a closer distance is needed,
a different mounting system is required.

B.2 Index of refraction

The index of refraction for the lenses can be calculated from the Sellmeier
equation or the Cauchy equation, empirical equations relating the wavelength
and index of refraction for different glasses. The Sellmeier equation used is

n2 (λ) = A0 +A1λ
2 +A2λ

−2 +A3λ
−4 +A4λ

−6 +A5λ
−8, (B.2)

Table B.1: Aspherical surface parameters

Parameter Value

C 0.016 767 270 288 4
K −1.035 958 114 8
A2 1.287 485 311 9 × 10−3 mm−2

A4 4.285 329 204 317 × 10−7 mm−4

A6 2.660 598 011 977 × 10−11 mm−6

A8 1.889 503 380 77 × 10−15 mm−8

A10 9.063 010 624 48 × 10−21 mm−10
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92.0 mm

76.2 mm

75.0 mm + PMT Offset

47.5 mm

Figure B.1: Optical detection setup with cooled housing as modelled in Inventor.
Relevant dimensions have been indicated. Note that the PMT Offset is the
spacer thickness and 75 mm is the starting distance (defined further in the
text).

while the Cauchy equation is

n2 (λ) = 1 + B1λ
2

λ2 − C1
+ B2λ

2

λ2 − C2
+ B3λ

2

λ2 − C3
(B.3)

For BK7 crown glass (also known under the name Schott glass or B270 glass),
which is the material of the ordered lenses, the Sellmeier equation has been
used (see Table B.2). For some other materials that can be used to construct
lenses, the Cauchy coefficients are also tabulated.

Table B.2: Sellmeier and Cauchy equation parameters for different glasses.

Sellmeier B270 Cauchy Lithosil Corning 7960
coefficients coefficients

A0 2.287 782 8 B1 6.694 226 × 10−1 6.852 562 45 × 10−1

A1 −9.314 872 3 × 10−3 µm−2 B2 4.345 839 × 10−1 4.188 670 77 × 10−1

A2 1.098 644 3 × 10−2 µm2 B3 8.716 947 × 10−1 5.111 042 39 × 10−1

A3 4.846 520 3 × 10−4 µm4 C1 4.480 112 × 10−3 µm2 4.619 907 90 × 10−3 µm2

A4 −3.394 473 8 × 10−5 µm6 C2 1.328 470 × 10−2 µm2 1.340 584 57 × 10−2 µm2

A5 1.695 855 4 × 10−6 µm8 C3 9.534 148 × 101 µm2 5.647 696 99 × 101 µm2
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B.3 Refraction of light

At the interface between two media with different refraction indices, the path of
the light has to break according to Snell’s law. Snell’s law in 3D can be stated
as [89]

c = −n̂ · î, (B.4)

ê = n1

n2
î+

n1

n2
c−

√
1 −

(
n1

n2

)2
(1 − c2)

 n̂, (B.5)

where î is the direction of the incident ray, n̂ is the normal vector of the curved
surface and n1 and n2 are the refraction indices of the first and second medium.
As the incident ray direction is known and the Sellmeier equation can be used
to calculate the refraction index, only the normal vector of the surface still
needs to be calculated.

Instead of deriving the formulation of the normal vector analytically, it can also
be approximated numerically. The normal vector is calculated by taking the
lens surface at the incident point, and calculating the lens surface position when
x and y (assuming z is the optical axis) are slightly varied. The vector product
of the two vectors connecting the incident point with the two additional points
results in the normal vector on the surface in the incident point.

B.4 Emission pattern

The decay from an excited state to a lower lying level, and subsequent generation
of a photon, is described by the dipole operator. The emission pattern can
be calculated from quantum mechanics [90, 91], yielding two different angular
distributions:

I (θ) ∝ sin2 (θ) (B.6)

I (θ) ∝ 1 + cos2 (θ) (B.7)

for decays with ∆mF = 0 and ∆mF = ±1 respectively. These waves are
respectively the π and σ waves and are separately propagated through the
optical setup.
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As the distribution is sin2 (θ) distributed and θ is the angle between the
oscillation direction of the electrical field, it follows that no radiation is emitted
along the oscillation path. Assuming that the oscillation path is vertical along
the beamline, since the laser light is vertically polarized in the COLLAPS setup,
the dipole emission pattern for π-waves indicates most light from the signal will
be emitted in the horizontal plane. As the lenses are located perpendicular to
the beam direction, the sin2 (θ) distribution will have the largest impact on the
signal.

The hit-and-miss algorithm is used to generate the initial directions for the
rays. For each ray, a random direction vector d = (x, y, z) is generated within
the cube x, y, z ∈ [−3, 3]. If the endpoint of this vector is within the boundary
defined by the function r (θ) = sin2 (θ), respectively r (θ) = 1 + cos2 (θ), the
direction vector is accepted and normalized. Otherwise, another direction vector
is randomly generated.

In the simulation code, only one set of lenses is simulated. The axis sytem
assumed in building the setup is that the optical axis is the x-axis and the
beamline axis is the y-axis. Therefore, x is restricted to [0, 1.5] to select only
the part of the cube that would point in the direction of x.

The emission pattern is combined with the position from which these rays are
released. Several options are available in the ray tracer:

1. Specific positions are supplied to the ray tracer along with a number of
rays. This will release this amount of rays from each of those specific
y-positions, with y = 0 corresponding to the symmetry axis of the lens
system.

2. When the option to use a distribution is used, the y-position is uniformly
random distributed between the minimal and maximal position provided.
The number of rays now indicates the total number of rays.

3. The size of the laser spot can also be used, and will distribute the starting
x and z position uniformly over a circle with the given diameter. Setting
this to 0 or lower will restrict the x and z coordinates to 0.
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B.5 Simulation scripts and output

The python script COLLAPS_raytracer.py contains the simulation code for
the optical setup as described here. A sequential ray tracer tracks the emitted
rays to the next optical element and removes the rays that exit the yz-area
corresponding to the aperture of the lenses. It generates a compressed .npz file
containing the ray positions and directions of the signal and background rays
when the rays have arrived at the flat edge of the second lens, along with the
number of rays originally emitted. This script is used from the command line
and understands the following arguments:

-wavelength Supply the wavelength of the light in nm (default: 811)

-material Supply the material of the lenses (b270, corning7960 or lithosil,
default: b270)

-positions Supply the position offsets from which to release the rays, in mm
(default: 0.0 5.0 10.0 15.0 20.0 25.0)

-rays Supply the number of rays to be released from each position (default:
10000)

-laserbeamsize Supply the diameter of the laser beam in mm (default: 5)

–distributed If True, N rays are released from a random released position
between the minimum and maximum supplied instead of N rays from each
position (default: False)

The script plot_COLLAPS_raytracer_data.py will process the data and
propagate the rays onto the surface defined by the PMT as in Figure B.1.
Additionally, the PMT is assumed to be covered except for a horizontal slit.
The detection efficiency is calculated by counting the number of rays that are
incident on the PMT inside this slit. The script can be called with the following
arguments:

filename Filename of the datafile

-startingdistance Distance between the second lens and the PMT without
spacer in mm (default: 47)

-pmtsize PMT diameter in mm (default: 47.5)
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Figure B.2: Result of calculating the light propagation for 811 nm light through
the setup.

-masksize Diameter inside which the ray distribution is drawn (default: 47.5)

-spacerthickness Maximal spacer thickness in mm (default: 100)

-slitsize Size of the slit in mm (default: 13)

–interactive If True, the interactive plots are shown before the PDF is saved
(default: False)

Of these, only the filename is a required argument.

The resulting pattern of light on the plane will be drawn, along with the
calculated light detection efficiency and the σ/π ratio, representing the difference
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in detection efficiency for the different emission patterns. The optimal spacer
thickness for maximal signal efficiency is automatically calculated and set as
initial thickness. When the interactive flag is given, a GUI is opened with all
plots along with a slider for the spacer thickness. The initial value of the slider
is the result of the optimizer. When this window is closed, the final value of
the slider is used to generate the figures saved to the PDF. The calculated light
distribution for a wavelength of 811 nm with a spacer thickness of 3.5 mm is
shown in Figure B.2.

Note that the signal efficiency is calculated as the amount of π-rays incident
on the PMT divided by the number of π-rays originally released. As only rays
propagating along the positive x-axis are generated, this efficiency is for the
total system of 2 PMT’s across from each other. The detection efficiency of a
single PMT is half of this number. The ratio of detected π-rays to σ-rays is
also calculated and displayed.

B.6 Source code

B.6.1 Ray tracing code
1 import numpy as np
2 import time
3 import scipy . optimize as optimize
4 import argparse
5

6 def hit_and_miss_3d_dipole_donut (n):
7 pos = 6* np. random .rand(n, 3) -3
8 pos [:, 0] = np.abs(pos [:, 0])
9

10 r = (pos **2).sum(axis =1) **0.5
11 pol = np. arccos (pos [:, 2]/r)
12 azi = np. arctan2 (pos [:, 1], pos [:, 0])
13

14 accepted = r <= np.sin(pol)**2
15 while not np.all( accepted ):
16 naccepted = ~ accepted
17 naccepted_num = naccepted .sum ()
18 pos[ naccepted ] = 6* np. random .rand( naccepted_num , 3) -3
19 pos[naccepted , 0] = np.abs(pos[naccepted , 0])
20 r[ naccepted ] = (pos[ naccepted ]**2) .sum(axis =1) **0.5
21 pol[ naccepted ] = np. arccos (pos[naccepted , 2]/r[ naccepted ])
22 azi[ naccepted ] = np. arctan2 (pos[naccepted , 1], pos[naccepted , 0])
23 accepted [ naccepted ] = r[ naccepted ] <= np.sin(pol[ naccepted ]) **2
24 return pos
25

26 def hit_and_miss_3d_dipole_dumbbell (n):
27 pos = 6* np. random .rand(n, 3) -3
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28 pos [:, 0] = np.abs(pos [:, 0])
29

30 r = (pos **2).sum(axis =1) **0.5
31 pol = np. arccos (pos [:, 2]/r)
32 azi = np. arctan2 (pos [:, 1], pos [:, 0])
33

34 accepted = r <=(1+ np.cos(pol)**2)
35 while not np.all( accepted ):
36 naccepted = ~ accepted
37 naccepted_num = naccepted .sum ()
38 pos[ naccepted ] = 6* np. random .rand( naccepted_num , 3) -3
39 pos[naccepted , 0] = np.abs(pos[naccepted , 0])
40 r[ naccepted ] = (pos[ naccepted ]**2) .sum(axis =1) **0.5
41 pol[ naccepted ] = np. arccos (pos[naccepted , 2]/r[ naccepted ])
42 azi[ naccepted ] = np. arctan2 (pos[naccepted , 1], pos[naccepted , 0])
43 accepted [ naccepted ] = r[ naccepted ] <= (1+ np.cos(pol[ naccepted ]) **2)
44 return pos
45

46 def sellmeier (lamda , material =’b270 ’):
47 if material == ’corning7960 ’:
48 B1 = 6.85256245e -1
49 B2 = 4.18867077e -1
50 B3 = 5.11104239e -1
51 C1 = 4.61990790e -3
52 C2 = 1.34058457e -2
53 C3 = 5.64769699 e1
54 elif material == ’lithosil ’:
55 B1 = 6.694226e -1
56 B2 = 4.345839e -1
57 B3 = 8.716947e -1
58 C1 = 4.480112e -3
59 C2 = 1.328470e -2
60 C3 = 9.534148 e1
61 elif material == ’b270 ’:
62 A0 = 2.2877828
63 A1 = -9.3148723e -3
64 A2 = 1.0986443e -2
65 A3 = 4.8465203e -4
66 A4 = -3.3944738e -5
67 A5 = 1.6958554e -6
68 return (A0+A1* lamda **2+ A2 *( lamda ** -2)+A3 *( lamda ** -4)+A4 *( lamda ** -6)+

A5 *( lamda ** -8)) **0.5
69 ls = lamda * lamda
70 return (1+ (B1 /(ls -C1)+B2 /(ls -C2)+B3 /(ls -C3))*ls) **0.5
71

72 def sag(arr):
73 y = arr [0]
74 z = arr [1]
75 rs = y*y+z*z
76 r = rs **0.5
77 Ap = 100
78 C = 0.0167672702884
79 K = -1.0359581148
80 A2 = 1.2874853119e -3
81 A4 = 4.285329204317e -7
82 A6 = 2.660598011977e -11
83 A8 = 1.88950338077e -15
84 A10 = 9.06301062448e -21
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85 sag = C*rs /(1+(1 -(1+ K)*C*C*rs) **0.5) +A2*rs+A4*rs **2+ A6*rs **3+ A8*rs **4+
A10*rs **5

86 rs = (Ap /2) **2
87 sag[r>Ap /2] = C*rs /(1+(1 -(1+ K)*C*C*rs) **0.5) +A2*rs+A4*rs **2+ A6*rs **3+ A8*

rs **4+ A10*rs **5
88 return sag
89

90 def snell_3d (n1 , n2 , s1 , normal_vector ):
91 index_ratio = n1/n2
92 try:
93 cost = np. atleast_2d (np. einsum (’ai ,ai ->a’, -normal_vector , s1)).T
94 except ValueError :
95 cost = np. atleast_2d (np.dot(- normal_vector , s1.T)).T
96 return index_ratio *s1 +( index_ratio *cost -np.sqrt (1- index_ratio *

index_ratio *(1 - cost*cost)))* normal_vector
97

98 def normal_vector (x, lens):
99 if lens == 1:

100 f = lens1
101 else :
102 f = lens2
103 p1 = np. hstack ([ np. atleast_2d (f((x[:, 1], x[:, 2]))).T, x[:, 1:]])
104 x[:, 1] = x[:, 1]+1e -12
105 p2 = np. hstack ([ np. atleast_2d (f((x[:, 1], x[:, 2]))).T, x[:, 1:]])
106 x[:, 1] = x[:, 1] -1e -12
107 x[:, 2] = x[:, 2]+1e -12
108 p3 = np. hstack ([ np. atleast_2d (f((x[:, 1], x[:, 2]))).T, x[:, 1:]])
109 v1 = p2 -p1
110 v2 = p3 -p1
111 v1 = v1 / np. atleast_2d ((( v1 **2).sum(axis =1) **0.5) ).T
112 v2 = v2 / np. atleast_2d ((( v2 **2).sum(axis =1) **0.5) ).T
113 direc = np. cross (v2 , v1)
114 if lens == 3:
115 direc = -direc
116 return direc /np. atleast_2d (( direc **2).sum(axis =1)).T **0.5
117

118 def lens1 (arr):
119 return lens_position + lens_thickness -sag(arr)
120

121 def lens2 (arr):
122 return lens_position + lens_thickness +gap+sag(arr)
123

124 def first_prop (ray_pos , ray_direc ):
125 def first_intersection (x, ray_pos , ray_direc ):
126 new_ray = ray_pos + np.abs(np. atleast_2d (x).T)* ray_direc
127 return_val = new_ray [:, 0] - lens_position
128 return return_val
129

130 for i in range (0, ray_pos . shape [0] , stepping ):
131 result = optimize .root( first_intersection , np.ones( ray_pos [i:i+

stepping ]. shape [0]) *76 , args =( ray_pos [i:i+ stepping ], ray_direc [i:i+
stepping ]))

132 try:
133 distance = np. vstack ([ distance , np.abs(np. atleast_2d ( result .x).T

)])
134 except ( ValueError , UnboundLocalError ):
135 distance = np.abs(np. atleast_2d ( result .x).T)
136 rp = ray_pos [i:i+ stepping ]
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137 rd = ray_direc [i:i+ stepping ]
138

139 ray_pos = ray_pos + distance * ray_direc
140 ray_direc = snell_3d (r_gap , r_lens , ray_direc , flat_1 )
141 return ray_pos , ray_direc
142

143 def second_prop (ray_pos , ray_direc ):
144 def first_intersection (x, ray_pos , ray_direc ):
145 new_ray = ray_pos + np.abs(np. atleast_2d (x).T)* ray_direc
146 return new_ray [:, 0] - lens1 (( new_ray [:, 1], new_ray [:, 2]))
147

148 for i in range (0, ray_pos . shape [0] , stepping ):
149 result = optimize .root( first_intersection , np.ones( ray_pos [i:i+

stepping ]. shape [0]) *35 , args =( ray_pos [i:i+ stepping ], ray_direc [i:i+
stepping ]))

150 try:
151 distance = np. vstack ([ distance , np.abs(np. atleast_2d ( result .x).T

)])
152 except ( ValueError , UnboundLocalError ):
153 distance = np.abs(np. atleast_2d ( result .x).T)
154

155 ray_pos = ray_pos + distance * ray_direc
156 norm_lens1 = normal_vector (ray_pos , lens =1)
157 ray_direc = snell_3d (r_lens , r_gap , ray_direc , norm_lens1 )
158 return ray_pos , ray_direc
159

160 def third_prop (ray_pos , ray_direc ):
161 def second_intersection (x, ray_pos , ray_direc ):
162 new_ray = ray_pos + np.abs(np. atleast_2d (x).T)* ray_direc
163 return new_ray [:, 0] - lens2 (( new_ray [:, 1], new_ray [:, 2]))
164

165 for i in range (0, ray_pos . shape [0] , stepping ):
166 result = optimize .root( second_intersection , np.ones( ray_pos [i:i+

stepping ]. shape [0]) *5, args =( ray_pos [i:i+ stepping ], ray_direc [i:i+
stepping ]))

167 try:
168 distance = np. vstack ([ distance , np.abs(np. atleast_2d ( result .x).T

)])
169 except ( ValueError , UnboundLocalError ):
170 distance = np.abs(np. atleast_2d ( result .x).T)
171

172 ray_pos = ray_pos + distance * ray_direc
173 norm_lens2 = normal_vector (ray_pos , lens =2)
174 ray_direc = snell_3d (r_gap , r_lens , ray_direc , norm_lens2 )
175

176 return ray_pos , ray_direc
177

178 def fourth_prop (ray_pos , ray_direc ):
179 location_last_surface = lens_position +2* lens_thickness +gap
180

181 def third_intersection (x, ray_pos , ray_direc ):
182 new_ray = ray_pos + np.abs(np. atleast_2d (x).T)* ray_direc
183 return new_ray [:, 0] - location_last_surface
184

185 for i in range (0, ray_pos . shape [0] , stepping ):
186 result = optimize .root( third_intersection , np.ones( ray_pos [i:i+

stepping ]. shape [0]) *5, args =( ray_pos [i:i+ stepping ], ray_direc [i:i+
stepping ]))
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187 try:
188 distance = np. vstack ([ distance , np.abs(np. atleast_2d ( result .x).T

)])
189 except ( ValueError , UnboundLocalError ):
190 distance = np.abs(np. atleast_2d ( result .x).T)
191 ray_pos = ray_pos + distance * ray_direc
192 ray_direc = snell_3d (r_lens , r_gap , ray_direc , flat_2 )
193 return ray_pos , ray_direc
194

195 parser = argparse . ArgumentParser ( description =" COLLAPS light detection region
raytracer simulator ")

196 parser . add_argument (’-wavelength ’, metavar =’nu ’, type =float , nargs =1,
default =[811.0] , help =’Supply the wavelength of the light in nm ( default
: 811) ’)

197 parser . add_argument (’-material ’, metavar =’mat ’, type =str , nargs =1, default =[
’b270 ’], help =’Supply the material of the lenses (b270 , corning7960 or
lithosil , default : b270)’, choices =[ ’b270 ’, ’corning7960 ’, ’lithosil ’])

198 parser . add_argument (’-positions ’, metavar =’pos ’, type = float , nargs =’+’,
help =’Supply the position offsets from which to release the rays , in mm
( default : 0.0 5.0 10.0 15.0 20.0 25.0) ’, default =[0.0 , 5.0 , 10.0 , 15.0 ,
20.0 , 25.0])

199 parser . add_argument (’-rays ’, metavar =’N’, type =int , nargs =1, help =’Supply
the number of rays to be released from each position ( default : 10000) ’,
default =[10000])

200 parser . add_argument (’-laserbeamsize ’, type =float , nargs =1, help =’Supply the
diameter of the laser beam in mm ( default : 5) ’, default =[5])

201 parser . add_argument (’-- distributed ’, action =’store_true ’, help =’If True , N
rays are released from a random released position between the minimum
and maximum supplied instead of N rays from each position ( default :
False )’)

202 result = parser . parse_args ()
203

204 wavelength = result . wavelength [0]
205 material = result . material [0]
206 positions = result . positions
207 N = result .rays [0]
208 distributed = result . distributed
209 laserbeamsize = result . laserbeamsize [0]
210

211 lens_position = 76.268702359
212 lens_thickness = 36
213 gap = 0
214 wavelength = wavelength /1000
215 stepping = 20
216

217 aperture = 92
218

219 x_pos = np. array ([])
220 y_pos = np. array ([])
221 z_pos = np. array ([])
222

223 x_pos_back = np. array ([])
224 y_pos_back = np. array ([])
225 z_pos_back = np. array ([])
226

227 if not distributed :
228 for p in positions :
229 if laserbeamsize > 0:
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230 pos = laserbeamsize *np. random .rand(N, 2) -laserbeamsize /2
231 while np.any ((( pos **2).sum(axis =1))**0.5 > laserbeamsize ):
232 not_ok = (( pos **2).sum(axis =1))**0.5 > laserbeamsize
233 pos[ not_ok ] = laserbeamsize *np. random .rand( not_ok .sum () , 2) -

laserbeamsize /2
234 else :
235 pos = np. zeros ((N, 2))
236 x_pos = np. append (x_pos , pos [:, 0])
237 y_pos = np. append (y_pos , np. zeros (N)+p)
238 z_pos = np. append (z_pos , pos [:, 1])
239 if laserbeamsize > 0:
240 pos = laserbeamsize *np. random .rand(N, 2) -laserbeamsize /2
241 while np.any ((( pos **2).sum(axis =1))**0.5 > laserbeamsize ):
242 not_ok = (( pos **2).sum(axis =1))**0.5 > laserbeamsize
243 pos[ not_ok ] = laserbeamsize *np. random .rand( not_ok .sum () , 2) -

laserbeamsize /2
244 else :
245 pos = np. zeros ((N, 2))
246 x_pos_back = np. append ( x_pos_back , pos [:, 0])
247 y_pos_back = np. append ( y_pos_back , np. zeros (N)+p)
248 z_pos_back = np. append ( z_pos_back , pos [:, 1])
249 else :
250 low , high = np.min( positions ), np.max( positions )
251 y_pos = (high -low)*np. random .rand(N)+low
252 if laserbeamsize > 0:
253 pos = laserbeamsize *np. random .rand(N, 2) -laserbeamsize /2
254 while np.any ((( pos **2).sum(axis =1))**0.5 > laserbeamsize ):
255 not_ok = (( pos **2).sum(axis =1))**0.5 > laserbeamsize
256 pos[ not_ok ] = laserbeamsize *np. random .rand( not_ok .sum () , 2) -

laserbeamsize /2
257 else :
258 pos = np. zeros ((N, 2))
259 x_pos = pos [:, 0]
260 z_pos = pos [:, 1]
261

262 low , high = np.min( positions ), np.max( positions )
263 y_pos_back = (high -low)*np. random .rand(N)+low
264 if laserbeamsize > 0:
265 pos = laserbeamsize *np. random .rand(N, 2) -laserbeamsize /2
266 while np.any ((( pos **2).sum(axis =1))**0.5 > laserbeamsize ):
267 not_ok = (( pos **2).sum(axis =1))**0.5 > laserbeamsize
268 pos[ not_ok ] = laserbeamsize *np. random .rand( not_ok .sum () , 2) -

laserbeamsize /2
269 else :
270 pos = np. zeros ((N, 2))
271 x_pos_back = pos [:, 0]
272 z_pos_back = pos [:, 1]
273

274 direc = hit_and_miss_3d_dipole_donut (len( x_pos ))
275 direc = direc / np. atleast_2d (( direc **2).sum(axis =1) **0.5) .T
276 x_direc , y_direc , z_direc = direc [:, 0], direc [:, 1], direc [:, 2]
277 ray_pos = np. vstack ([ x_pos , y_pos , z_pos ]).T
278 ray_direc = np. vstack ([
279 x_direc ,
280 y_direc ,
281 z_direc ,
282 ]).T
283
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284 direc_back = hit_and_miss_3d_dipole_dumbbell (len( x_pos ))
285 direc_back = direc_back / np. atleast_2d (( direc_back **2).sum(axis =1) **0.5) .T
286 x_direc_back , y_direc_back , z_direc_back = direc_back [:, 0], direc_back [:,

1], direc_back [:, 2]
287 ray_pos_back = np. vstack ([ x_pos_back , y_pos_back , z_pos_back ]).T
288 ray_direc_back = np. vstack ([
289 x_direc_back ,
290 y_direc_back ,
291 z_direc_back ,
292 ]).T
293

294 r_gap = 1.0
295 r_lens = sellmeier ( wavelength , material = material )
296

297 flat_1 = np. array ([-1, 0, 0])
298 flat_2 = np. array ([-1, 0, 0])
299

300 prop_distance = lens_position
301

302 print (’Starting pi wave propagation ’)
303 start = time.time ()
304 ray_pos1 , ray_direc1 = first_prop (ray_pos , ray_direc )
305 mask1 = (( ray_pos1 [:, 1:]**2) .sum(axis =1) **0.5) <aperture /2
306 ray_pos1 = ray_pos1 [ mask1 ]
307 ray_direc1 = ray_direc1 [ mask1 ]
308 print (’Lightrays at the first lens , starting second propagation ’)
309 ray_pos2 , ray_direc2 = second_prop (ray_pos1 , ray_direc1 )
310 mask2 = (( ray_pos2 [:, 1:]**2) .sum(axis =1) **0.5) <aperture /2
311 ray_pos2 = ray_pos2 [ mask2 ]
312 ray_direc2 = ray_direc2 [ mask2 ]
313 print (’Lightrays at the gap , starting third propagation ’)
314 ray_pos3 , ray_direc3 = third_prop (ray_pos2 , ray_direc2 )
315 mask3 = (( ray_pos2 [:, 1:]**2) .sum(axis =1) **0.5) <aperture /2
316 ray_pos3 = ray_pos3 [ mask3 ]
317 ray_direc3 = ray_direc3 [ mask3 ]
318 print (’Lightrays at the second lens , starting fourth propagation ’)
319 ray_pos4 , ray_direc4 = fourth_prop (ray_pos3 , ray_direc3 )
320 mask4 = (( ray_pos4 [:, 1:]**2) .sum(axis =1) **0.5) <aperture /2
321 ray_pos4 = ray_pos4 [ mask4 ]
322 ray_direc4 = ray_direc4 [ mask4 ]
323 stop = time.time ()
324 print (’Done in {:.3g} s’. format (stop - start ))
325

326 original = ray_pos . shape [0]
327 surviving = ray_pos4 . shape [0]
328 print (’Light ray survival ( inside aperture of lenses ): {:.0f }/{:.0 f }={:.2 f}

%’. format (surviving , original , surviving / original *100) )
329

330 print (’Starting sigma wave propagation ’)
331 start = time.time ()
332 ray_pos1_back , ray_direc1_back = first_prop ( ray_pos_back , ray_direc_back )
333 mask1_back = (( ray_pos1_back [:, 1:]**2) .sum(axis =1) **0.5) <aperture /2
334 ray_pos1_back = ray_pos1_back [ mask1_back ]
335 ray_direc1_back = ray_direc1_back [ mask1_back ]
336 print (’Lightrays at the first lens , starting second propagation ’)
337 ray_pos2_back , ray_direc2_back = second_prop ( ray_pos1_back , ray_direc1_back )
338 mask2_back = (( ray_pos2_back [:, 1:]**2) .sum(axis =1) **0.5) <aperture /2
339 ray_pos2_back = ray_pos2_back [ mask2_back ]
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340 ray_direc2_back = ray_direc2_back [ mask2_back ]
341 print (’Lightrays at the gap , starting third propagation ’)
342 ray_pos3_back , ray_direc3_back = third_prop ( ray_pos2_back , ray_direc2_back )
343 mask3_back = (( ray_pos2_back [:, 1:]**2) .sum(axis =1) **0.5) <aperture /2
344 ray_pos3_back = ray_pos3_back [ mask3_back ]
345 ray_direc3_back = ray_direc3_back [ mask3_back ]
346 print (’Lightrays at the second lens , starting fourth propagation ’)
347 ray_pos4_back , ray_direc4_back = fourth_prop ( ray_pos3_back , ray_direc3_back )
348 mask4_back = (( ray_pos4_back [:, 1:]**2) .sum(axis =1) **0.5) <aperture /2
349 ray_pos4_back = ray_pos4_back [ mask4_back ]
350 ray_direc4_back = ray_direc4_back [ mask4_back ]
351 stop = time.time ()
352 print (’Done in {:.3g} s’. format (stop - start ))
353

354 original = ray_pos_back . shape [0]
355 surviving = ray_pos4_back . shape [0]
356 print (’Light ray survival ( inside aperture of lenses ): {:.0f }/{:.0 f }={:.2 f}

%’. format (surviving , original , surviving / original *100) )
357

358 np. savez_compressed (str( wavelength *1000) +’.npz ’, ( ray_pos .shape , ray_pos4 ,
ray_direc4 , ray_pos4_back , ray_direc4_back ))

359

360 print (’Files saved as ’+str( wavelength *1000) +’.npz ’)

B.6.2 Plotting code

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from matplotlib . widgets import Slider
4 from mpl_toolkits . mplot3d import Axes3D
5 from mpl_toolkits . mplot3d . art3d import Line3DCollection
6 import argparse
7 import scipy . optimize as optimize
8 import pathlib
9

10 parser = argparse . ArgumentParser ( description =" COLLAPS light detection region
raytracer processor ")

11 parser . add_argument (’filename ’, type =str , nargs =1, help =’Filename of the
datafile ’)

12 parser . add_argument (’-startingdistance ’, type =float , nargs =1, help =’Distance
between the second lens and the PMT without spacer in mm ( default : 47)

’, default =[47])
13 parser . add_argument (’-pmtsize ’, type =float , nargs =1, help =’PMT diameter in

mm ( default : 47.5) ’, default =[47.5])
14 parser . add_argument (’-masksize ’, type =float , nargs =1, help =’Diameter inside

which the ray distribution is drawn ( default : 47.5) ’, default =[47.5])
15 parser . add_argument (’-spacerthickness ’, type =float , nargs =1, help =’Maximal

spacer thickness in mm ( default : 100) ’, default =[100])
16 parser . add_argument (’-slitsize ’, type =float , nargs =1, help =’Size of the slit

in mm ( default : 13) ’, default =[13])
17 parser . add_argument (’-- interactive ’, action =’store_true ’, help =’If True , the

interactive plots are shown before the PDF is saved ( default : False )’)
18 result = parser . parse_args ()
19

20 filename = result . filename [0]
21 startingdistance = result . startingdistance [0]
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22 spacerthickness = result . spacerthickness [0]
23 pmt_radius = result . pmtsize [0]/2
24 mask_radius = result . masksize [0]/2
25 slitsize = result . slitsize [0]
26 interactive = result . interactive
27

28 r = np.load( filename )
29 wavelength = float (’.’.join( filename . split (’.’)[: -1]))
30 original_shape , pos , direc , pos_back , direc_back = r[’arr_0 ’]
31 original = original_shape [0]
32

33 x_start = pos [0, 0]
34

35 def propagate (ray_pos , ray_direc , distance ):
36 location = x_start + startingdistance + distance
37 distance = np. atleast_2d ( location - ray_pos [:, 0]).T
38 return ray_pos + distance * ray_direc /np. atleast_2d ( ray_direc [:, 0]).T
39

40 def SB(val):
41 new_pos = propagate (pos , direc , val)
42 new_pos_back = propagate (pos_back , direc_back , val)
43 pmt_mask = np. logical_and . reduce ([(( new_pos [:, 1:]**2) .sum(axis =1) **0.5)

<pmt_radius , np.abs( new_pos [:, 2]) <slitsize /2])
44 pmt_mask_back = np. logical_and . reduce ([(( new_pos_back [:, 1:]**2) .sum(

axis =1) **0.5) <pmt_radius , np.abs( new_pos_back [:, 2]) <slitsize /2])
45 return pmt_mask .sum ()/ pmt_mask_back .sum ()
46

47 def efficiency (val):
48 new_pos = propagate (pos , direc , val)
49 pmt_mask = np. logical_and . reduce ([(( new_pos [:, 1:]**2) .sum(axis =1) **0.5)

<pmt_radius , np.abs( new_pos [:, 2]) <slitsize /2])
50 return pmt_mask .sum ()/ original *100
51

52 resultx = 76.268702359 - startingdistance
53 result = optimize . minimize_scalar ( lambda x: -efficiency (x), bounds =(0 ,

spacerthickness ), method =’bounded ’)
54 resultx = result .x
55 new_pos = propagate (pos , direc , resultx )
56 new_pos_back = propagate (pos_back , direc_back , resultx )
57

58 mask = (( new_pos [:, 1:]**2) .sum(axis =1) **0.5) <mask_radius
59 mask_back = (( new_pos_back [:, 1:]**2) .sum(axis =1) **0.5) <mask_radius
60

61 pmt_mask = (( new_pos [:, 1:]**2) .sum(axis =1) **0.5) <pmt_radius
62 x_range = new_pos [mask , 1]. ptp ()
63 x_range_back = new_pos_back [mask_back , 1]. ptp ()
64

65 var = np. arange (0, spacerthickness +0.5 , 0.5)
66 eff = np. array ([ efficiency (val) for val in var ])
67 S = np. array ([ SB(val) for val in var ])
68

69 distance = resultx
70

71 if interactive :
72 def update (val):
73 val = sdist .val
74 new_pos = propagate (pos , direc , val)
75 mask = (( new_pos [:, 1:]**2) .sum(axis =1) **0.5) <mask_radius
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76 pmt_mask = (( new_pos [:, 1:]**2) .sum(axis =1) **0.5) <pmt_radius
77

78 xlims = ax. get_xlim ()
79 ylims = ax. get_ylim ()
80

81 ax. clear ()
82 x_range = new_pos [mask , 1]. ptp ()
83 hexbin = ax. hexbin ( new_pos [mask , 1], new_pos [mask , 2], gridsize =int

(2* x_range ), mincnt =1, bins=’log ’)
84 ax.plot(x, y, zorder =10)
85 ax.plot(x_bars , y_bars , zorder =10)
86 ax.plot(x_bars , -y_bars , zorder =10)
87 ax. set_xlim ( xlims )
88 ax. set_ylim ( ylims )
89

90 new_pos_back = propagate (pos_back , direc_back , val)
91 mask_back = (( new_pos_back [:, 1:]**2) .sum(axis =1) **0.5) <mask_radius
92 pmt_mask_back = (( new_pos_back [:, 1:]**2) .sum(axis =1) **0.5) <

pmt_radius
93

94 xlims = ax2. get_xlim ()
95 ylims = ax2. get_ylim ()
96

97 ax2. clear ()
98 x_range = new_pos_back [mask_back , 1]. ptp ()
99 hexbin = ax2. hexbin ( new_pos_back [mask_back , 1], new_pos_back [

mask_back , 2], gridsize =int (2* x_range ), mincnt =1, bins=’log ’)
100 ax2.plot(x, y, zorder =10)
101 ax2.plot(x_bars , y_bars , zorder =10)
102 ax2.plot(x_bars , -y_bars , zorder =10)
103 ax2. set_xlim ( xlims )
104 ax2. set_ylim ( ylims )
105

106 e = efficiency (val)
107 s = SB(val)
108

109 ax. set_title (’{:.2f} % total efficiency ’. format (e))
110 ax2. set_title (’{:.2f} $\pi$ wave/$\ sigma$ wave ’. format (s))
111

112 eff_vert . set_data ([val , val], [0, e])
113 sb_vert . set_data ([val , val], [0, s])
114

115 fig. canvas . draw_idle ()
116 global distance
117 distance = val
118

119 fig = plt. figure ()
120 ax = fig. add_axes ([0 , 0.15 , 0.5 , 0.5])
121 ax2 = fig. add_axes ([0.5 , 0.15 , 0.5 , 0.5] , sharex =ax , sharey =ax)
122 ax. set_aspect (1)
123 ax2. set_aspect (1)
124 sax = fig. add_axes ([0.2 , 0.05 , 0.6 , 0.05])
125 ax3 = fig. add_axes ([0.065 , 0.75 , 1 -2*0.065 , 0.2])
126 tax3 = ax3. twinx ()
127 line , = ax3.plot(var , eff)
128 ax3. set_ylabel (’Signal efficiency [%] ’, color =line. get_color ())
129 ax3. tick_params (axis=’y’, labelcolor =line. get_color ())
130 color = ’tab:red ’
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131 tax3.plot(var , S, color = color )
132 tax3. set_ylabel (’$\pi$/$\ sigma$ [-]’, color = color )
133 tax3. tick_params (axis=’y’, labelcolor = color )
134 ax3. set_xlabel (’Spacer thickness [mm]’)
135

136 eff_vert , = ax3.plot ([ resultx , resultx ], [0, efficiency ( resultx )],
linestyle =’solid ’, color =line. get_color () , lw =4.0)

137 sb_vert , = tax3.plot ([ resultx , resultx ], [0, SB( resultx )], linestyle =’
dashed ’, color =color , lw =2.0)

138

139 hexbin = ax. hexbin ( new_pos [mask , 1], new_pos [mask , 2], gridsize =int (2*
x_range ), mincnt =1, bins=’log ’)

140 hexbin2 = ax2. hexbin ( new_pos_back [mask_back , 1], new_pos_back [mask_back ,
2], gridsize =int (2* x_range_back ), mincnt =1, bins=’log ’)

141

142 ax. set_title (’{:.2f} % total efficiency ’. format ( efficiency ( resultx )))
143 ax2. set_title (’{:.2f} $\pi$/$\ sigma$ ’. format (SB( resultx )))
144 sdist = Slider (sax , ’Spacer thickness ’, 0, spacerthickness , valinit =

resultx )
145 sdist . on_changed ( update )
146

147 theta = np. linspace (0, 2* np.pi , 100)
148 r = pmt_radius
149 x = np.cos( theta )*r
150 y = np.sin( theta )*r
151 y_bars = np. array ([ slitsize /2, slitsize /2])
152 x_bars = np.cos(np. arcsin ( slitsize /2/r))*r
153 x_bars = np. array ([- x_bars , x_bars ])
154 ax. set_xlim (-25, 25)
155 ax. set_ylim (-25, 25)
156 ax.plot(x, y, zorder =10)
157 ax.plot(x_bars , y_bars , zorder =10)
158 ax.plot(x_bars , -y_bars , zorder =10)
159

160 ax2. set_xlim (-25, 25)
161 ax2. set_ylim (-25, 25)
162 ax2.plot(x, y, zorder =10)
163 ax2.plot(x_bars , y_bars , zorder =10)
164 ax2.plot(x_bars , -y_bars , zorder =10)
165

166 plt.show ()
167

168 new_pos = propagate (pos , direc , distance )
169 new_pos_back = propagate (pos_back , direc_back , distance )
170

171 mask = (( new_pos [:, 1:]**2) .sum(axis =1) **0.5) <mask_radius
172 mask_back = (( new_pos_back [:, 1:]**2) .sum(axis =1) **0.5) <mask_radius
173

174 x_range = new_pos [mask , 1]. ptp ()
175 x_range_back = new_pos_back [mask_back , 1]. ptp ()
176

177 fig = plt. figure ()
178 fig. set_dpi (200)
179 fig. set_size_inches (120*0.0393700787 , 120*0.0393700787)
180 ax = fig. add_axes ([0 , 0, 0.5 , 0.5])
181 ax2 = fig. add_axes ([0.5 , 0, 0.5 , 0.5] , sharex =ax , sharey =ax)
182 ax. set_ylabel (’z [mm]’)
183 ax. set_xlabel (’y [mm]’)
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184 ax2. tick_params ( labelleft = False )
185 ax. set_aspect (1)
186 ax2. set_aspect (1)
187 ax3 = fig. add_axes ([0 , 0.75 , 1, 0.2])
188 tax3 = ax3. twinx ()
189

190 line , = ax3.plot(var , eff)
191 ax3. set_ylabel (’Signal efficiency [%] ’, color =line. get_color ())
192 ax3. tick_params (axis=’y’, labelcolor =line. get_color ())
193 color = ’tab:red ’
194 tax3.plot(var , S, color = color )
195 tax3. set_ylabel (’$\pi$/$\ sigma$ [-]’, color = color )
196 tax3. tick_params (axis=’y’, labelcolor = color )
197 ax3. set_xlabel (’Spacer thickness [mm]’)
198 ax3. set_title (’Chosen spacer thickness : {:.2f} mm ’. format ( distance ))
199

200 eff_vert , = ax3.plot ([ distance , distance ], [0, efficiency ( distance )],
linestyle =’solid ’, color =line. get_color () , lw =4.0)

201 sb_vert , = tax3.plot ([ distance , distance ], [0, SB( distance )], linestyle =’
dashed ’, color =color , lw =2.0)

202

203 hexbin = ax. hexbin ( new_pos [mask , 1], new_pos [mask , 2], gridsize =int (2*
x_range ), mincnt =1, bins=’log ’)

204 hexbin2 = ax2. hexbin ( new_pos_back [mask_back , 1], new_pos_back [mask_back , 2],
gridsize =int (2* x_range_back ), mincnt =1, bins=’log ’)

205

206 ax. set_title (’{:.2f} % total efficiency \n$\pi$ distribution ’. format (
efficiency ( distance )))

207 ax2. set_title (’{:.2f} $\pi$/$\ sigma$ \n$\ sigma$ distribution ’. format (SB(
distance )))

208

209 theta = np. linspace (0, 2* np.pi , 100)
210 r = pmt_radius
211 x = np.cos( theta )*r
212 y = np.sin( theta )*r
213 y_bars = np. array ([ slitsize /2, slitsize /2])
214 x_bars = np.cos(np. arcsin ( slitsize /2/r))*r
215 x_bars = np. array ([- x_bars , x_bars ])
216 ax. set_xlim (-25, 25)
217 ax. set_ylim (-25, 25)
218 ax.plot(x, y, zorder =10 , color =’k’)
219 ax.plot(x_bars , y_bars , zorder =10 , color =’k’)
220 ax.plot(x_bars , -y_bars , zorder =10 , color =’k’)
221

222 ax2. set_xlim (-25, 25)
223 ax2. set_ylim (-25, 25)
224 ax2.plot(x, y, zorder =10 , color =’k’)
225 ax2.plot(x_bars , y_bars , zorder =10 , color =’k’)
226 ax2.plot(x_bars , -y_bars , zorder =10 , color =’k’)
227

228 file_path = pathlib .Path( filename )
229 filename = ’{:.0f}_{:.0f}. pdf ’. format ( wavelength , slitsize )
230 fig. savefig (filename , bbox_inches =’tight ’)
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